0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подготовка к ЕГЭЗадачи с параметрами

Как подготовиться к решению задач с параметром на ЕГЭ | 1С:Репетитор

Советы ведущего преподавателя курса 1С:Репетитор
Татьяны Александровны Чернецкой

Советы основаны на опыте подготовки группы учеников 11 класса в 2017 и 2018 годах, заданиях ЕГЭ 2017–2018 годов и обобщенных данных при сдаче ЕГЭ по профильной математике в 2017 и 2018 годах. Эти рекомендации будут полезны не только для учеников, но и для и их родителей.


Лектор, методолог, автор учебных материалов и пособий

Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня

Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.

Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.

«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.

Чему нужно научиться, решая задачи с параметром

В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.

Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.

Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.

Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:

  • задачи, основанные на свойствах дискриминанта и старшего коэффициента квадратного трехчлена;
  • применение теоремы Виета в задачах с параметром;
  • расположение корней квадратного трехчлена относительно заданных точек;
  • более сложные задачи, сводящиеся к исследованию квадратного трехчлена.

    Следующая тема курса – графические методы решения задач с параметром

    Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a) . Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.

    На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.

    В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.

    Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.

    Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.

    Регулярно тренируйтесь в решении задач

    Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
    Вы можете:

    • Начать заниматься бесплатно.
    • Купить доступ к этой задаче в составе экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.

    Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.

    Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.

    Задачи с параметрами на ЕГЭ по математике

    Задача с параметрами – одна из самых сложных в ЕГЭ по математике Профильного уровня. Это задание №18

    И знать здесь действительно нужно много.

    Научиться строить графики всех элементарных функций (и отличать по внешнему виду логарифм от корня квадратного, а экспоненту – от параболы).

    И после этого – учимся решать сами задачи №18 Профильного ЕГЭ.

    Вот основные типы задач с параметрами:

    Еще одна задача с параметром – повышенного уровня сложности. Автор задачи – Анна Малкова

    И несколько полезных советов тем, кто решает задачи с параметрами:

    1. Есть два универсальных правила для решения задач с параметрами. Помогают всегда. Хорошо, в 99% случаев помогают. То есть почти всегда.

    — Если в задаче с параметром можно сделать замену переменной – сделайте замену переменной.

    — Если задачу с параметром можно решить нарисовать – рисуйте. То есть применяйте графический метод.

    2. Новость для тех, кто решил заниматься только алгеброй и обойтись без геометрии (мы уже рассказывали о том, почему это невозможно). Многие задачи с параметрами быстрее и проще решаются именно геометрическим способом.

    Эксперты ЕГЭ очень не любят слова «Из рисунка видно…» Ваш рисунок – только иллюстрация к решению. Вам нужно объяснить, на что смотреть, и обосновать свои выводы. Примеры оформления – здесь. Эксперты ЕГЭ также не любят слова «очевидно, что…» (когда ничего не очевидно) и «ёжику ясно…».

    3. Сколько надо решить задач, чтобы освоить тему «Параметры на ЕГЭ по математике»? – Хотя бы 50, и самых разных. И в результате, посмотрев на задачу с параметром, вы уже поймете, что с ней делать.

    4. Задачи с параметрами похожи на конструктор. Разобрав много таких задач, вы заметите, как решение «собирается» из знакомых элементов. Сможете разглядеть уравнение окружности или отрезка. Переформулировать условие, чтобы сделать его проще.

    На нашем Онлайн-курсе теме «Параметры» посвящено не менее 12 двухчасовых занятий. Кстати, оценивается задача 18 Профильного ЕГЭ в 4 первичных балла, которые отлично пересчитываются в тестовые!

    Звоните нам: 8 (800) 775-06-82 (бесплатный звонок по России) +7 (495) 984-09-27 (бесплатный звонок по Москве)

    Или нажмите на кнопку «Узнать больше», чтобы заполнить контактную форму. Мы обязательно Вам перезвоним.

    Обучающее видео
    БЕСПЛАТНО

    Техническая поддержка:
    help@ege-study.ru (круглосуточно)

    Закажите звонок и получите скидку -50% на первый месяц занятий!

    Для нормального функционирования и Вашего удобства, сайт использует файлы cookies. Это совершенно обычная практика.Продолжая использовать портал, Вы соглашаетесь с нашей Политикой конфиденциальности.

    Все поля обязательны для заполнения

    Премиум

    Вся часть 2 на ЕГЭ по математике, от задачи 13 до задачи 19. То, о чем не рассказывают даже ваши репетиторы. Все приемы решения задач части 2. Оформление задач на экзамене. Десятки реальных задач ЕГЭ, от простых до самых сложных.

    Видеокурс «Премиум» состоит из 7 курсов для освоения части 2 ЕГЭ по математике (задачи 13-19). Длительность каждого курса — от 3,5 до 4,5 часов.

    1. Уравнения (задача 13)
    2. Стереометрия (задача 14)
    3. Неравенства (задача 15)
    4. Геометрия (задача 16)
    5. Финансовая математика (задача 17)
    6. Параметры (задача 18)
    7. Нестандартная задача на числа и их свойства (задача 19).

    Здесь то, чего нет в учебниках. Чего вам не расскажут в школе. Приемы, методы и секреты решения задач части 2.

    Каждая тема разобрана с нуля. Десятки специально подобранных задач, каждая из которых помогает понять «подводные камни» и хитрости решения. Автор видеокурса Премиум — репетитор-профессионал Анна Малкова.

    Получи пятерку

    Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

    Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

    Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

    Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

    Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля — до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

    Сразу после оплаты вы получите ссылки на скачивание видеокурсов и уникальные ключи к ним.

    Задачи комплекта «Математические тренинги — 2019» непростые. В каждой – интересные хитрости, «подводные камни», полезные секреты.

    Варианты составлены так, чтобы охватить все возможные сложные задачи, как первой, так и второй части ЕГЭ по математике.

    Как пользоваться?

    1. Не надо сразу просматривать задачи (и решения) всех вариантов. Такое читерство вам только помешает. Берите по одному! Задачи решайте по однойи старайтесь довести до ответа.
    2. Если почти ничего не получилось – начинать надо не с решения вариантов, а с изучения математики. Вам помогут книга для подготовки к ЕГЭи Годовой Онлайн-курс.
    3. Если вы правильно решили из первого варианта Маттренингов 5-7 задач – значит, знаний не хватает. Смотри пункт 1: Книгаи Годовой Онлайн-курс!
    4. Обязательно разберите правильные решения. Посмотрите видеоразбор – в нем тоже много полезного.
    5. Можно решать самостоятельно или вместе с друзьями. Или всем классом. А потом смотреть видеоразбор варианта.

    Стоимость комплекта «Математические тренинги – 2019» — всего 1100 рублей. За 5 вариантов с решениями и видеоразбором каждого.

    Это пробная версия онлайн курса по профильной математике.

    Вы получите доступ к 3 темам, которые помогут понять принцип обучения, работу платформы и оценить ведущую курса Анну Малкову.

    — 3 темы курса (из 50).
    — Текстовый учебник с видеопримерами.
    — Мастер-класс Анны Малковой.
    — Тренажер для отработки задач.

    Регистрируйтесь, это бесплатно!

    Нажимая на кнопку, вы даете согласие на обработку своих персональных данных

    Задачи с параметром

    Решите уравнение (ax+3=0) при всех значениях параметра (a) .

    Уравнение можно переписать в виде (ax=-3) . Рассмотрим два случая:

    1) (a=0) . В этом случае левая часть равна (0) , а правая – нет, следовательно, уравнение не имеет корней.

    2) (ane 0) . Тогда (x=-dfrac<3>) .

    (a=0 Rightarrow xin varnothing; \ ane 0 Rightarrow x=-dfrac<3>) .

    Решите уравнение (ax+a^2=0) при всех значениях параметра (a) .

    Уравнение можно переписать в виде (ax=-a^2) . Рассмотрим два случая:

    1) (a=0) . В этом случае левая и правая части равны (0) , следовательно, уравнение верно при любых значениях переменной (x) .

    2) (ane 0) . Тогда (x=-a) .

    (a=0 Rightarrow xin mathbb; \ ane 0 Rightarrow x=-a) .

    Решите неравенство (2ax+5cosdfrac<3>geqslant 0) при всех значениях параметра (a) .

    Неравенство можно переписать в виде (axgeqslant -dfrac<5><4>) . Рассмотрим три случая:

    1) (a=0) . Тогда неравенство принимает вид (0geqslant -dfrac<5><4>) , что верно при любых значениях переменной (x) .

    2) (a>0) . Тогда при делении на (a) обеих частей неравенства знак неравенства не изменится, следовательно, (xgeqslant -dfrac<5><4a>) .

    3) (a . Тогда при делении на (a) обеих частей неравенства знак неравенства изменится, следовательно, (xleqslant -dfrac<5><4a>) .

    (a=0 Rightarrow xin mathbb; \ a>0 Rightarrow xgeqslant -dfrac<5><4a>; \ a .

    Решите неравенство (a(x^2-6) geqslant (2-3a^2)x) при всех значениях параметра (a) .

    Преобразуем неравенство к виду: (ax^2+(3a^2-2)x-6a geqslant 0) . Рассмотрим два случая:

    1) (a=0) . В этом случае неравенство становится линейным и принимает вид: (-2x geqslant 0 Rightarrow xleqslant 0) .

    2) (ane 0) . Тогда неравенство является квадратичным. Найдем дискриминант:

    Т.к. (a^2 geqslant 0 Rightarrow D>0) при любых значениях параметра.

    Следовательно, уравнение (ax^2+(3a^2-2)x-6a = 0) всегда имеет два корня (x_1=-3a, x_2=dfrac<2>) . Таким образом, неравенство примет вид:

    [(ax-2)(x+3a) geqslant 0]

    Если (a>0) , то (x_1 и ветви параболы (y=(ax-2)(x+3a)) направлены вверх, значит, решением являются (xin (-infty; -3a]cup big[dfrac<2>; +infty)) .

    Если (a , то (x_1>x_2) и ветви параболы (y=(ax-2)(x+3a)) направлены вниз, значит, решением являются (xin big[dfrac<2>; -3a]) .

    (a=0 Rightarrow xleqslant 0; \ a>0 Rightarrow xin (-infty; -3a]cup big[dfrac<2>; +infty); \ a .

    При каких (a) множество решений неравенства ((a^2-3a+2)x -a+2geqslant 0) содержит полуинтервал ([2;3)) ?

    Преобразуем неравенство: ((a-1)(a-2)x geqslant a-2) . Получили линейное неравенство. Рассмотрим случаи:

    1) (a=2) . Тогда неравенство примет вид (0 geqslant 0) , что верно при любых значениях (x) , следовательно, множество решений содержит полуинтервал ([2;3)) .

    2) (a=1) . Тогда неравенство примет вид (0 geqslant -1) , что верно при любых значениях (x) , следовательно, множество решений содержит полуинтервал ([2;3)) .

    3) ((a-1)(a-2)>0 Leftrightarrow ain (-infty;1)cup (2;+infty)) . Тогда:

    (xgeqslant dfrac<1>) . Для того, чтобы множество решений содержало полуинтервал ([2;3)) , необходимо, чтобы

    (dfrac<1> leqslant 2 Leftrightarrow dfrac<3-2a> leqslant 0 Rightarrow ain (-infty; 1)cup [1,5; +infty)) .

    Учитывая условие (ain (-infty;1)cup (2;+infty)) , получаем (ain (-infty;1)cup (2;+infty)) .

    (xleqslant dfrac<1> Rightarrow dfrac<1> geqslant 3) .

    Действуя аналогично случаю 3), получаем (ain (1; dfrac<4><3>big]) .

    Определить количество корней уравнения (ax^2+(3a+1)x+2=0) при всех значениях параметра (a) .

    Рассмотрим два случая:

    1) (a=0) . Тогда уравнение является линейным: (x+2=0 Rightarrow x=-2) . То есть уравнение имеет один корень.

    2) (ane 0) . Тогда уравнение является квадратным. Найдем дискриминант: (D=9a^2-2a+1) .

    Рассмотрим уравнение (9a^2-2a+1=0) : (D’=4-36 , следовательно, уравнение (9a^2-2a+1=0) не имеет корней. Значит, выражение ((9a^2-2a+1)) принимает значения строго одного знака: либо всегда положительно, либо отрицательно. В данном случае оно положительно при любых (a) (в этом можно убедиться, подставив вместо (a) любое число).

    Таким образом, (D=9a^2-2a+1>0) при всех (ane 0) . Значит, уравнение (ax^2+(3a+1)x+2=0) всегда имеет два корня: (x_<1,2>=dfrac<-3a-1pm sqrt D><2a>)

    Урок по теме «Методы решения задач с параметрами»

    Разделы: Математика

    Цель данной работы – изучение различных способов решения задач с параметрами. Возможность и умение решать задачи с параметрами демонстрируют владение методами решения уравнений и неравенств, осмысленное понимание теоретических сведений, уровень логического мышления, стимулируют познавательную деятельность. Для развития этих навыков необходимы длительнее усилия, именно поэтому в профильных 10-11 классах с углубленным изучением точных наук введен курс: “Математический практикум”, частью которого является решение уравнений и неравенств с параметрами. Курс входит в число дисциплин, включенных в компонент учебного плана школы.

    Успешному изучению методов решения задач с параметрами могут помочь элективный или факультативный курсы, или компонент за сеткой по теме: “Задачи с параметрами”.

    Рассмотрим четыре больших класса задач с параметрами:

    1. Уравнения, неравенства и их системы, которые необходимо решить для любого значения параметра, либо для значений параметра, принадлежащих определенному множеству.
    2. Уравнения, неравенства и их системы, для которых требуется определить количество решений в зависимости от значения параметра.
    3. Уравнения, неравенства и их системы, для которых требуется найти все те значения параметра, при которых указанные уравнения (системы, неравенства) имеют заданное число решений.
    4. Уравнения, неравенства и их системы, для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

    Методы решений задач с параметрами.

    1. Аналитический метод.

    Это способ прямого решения, повторяющий стандартные процедуры нахождения ответа в задачах без параметра.

    Пример 1. Найдите все значения параметра a, при которых уравнение:

    (2a – 1)x 2 + ax + (2a – 3) =0 имеет не более одного корня.

    При 2a – 1 = 0 данное уравнение квадратным не является, поэтому случай a =1/2 разбираем отдельно.

    Если a = 1/2, то уравнение принимает вид 1/2x – 2 = 0, оно имеет один корень.

    Если a ≠ 1/2 , то уравнение является квадратным; чтобы оно имело не более одного корня необходимо и достаточно, чтобы дискриминант был неположителен:

    Чтобы записать окончательный ответ, необходимо понять,

    2. Графический метод.

    В зависимости от задачи (с переменной x и параметром a) рассматриваются графики в координатной плоскости (x;y) или в плоскости (x;a).

    Пример 2. Для каждого значения параметра a определите количество решений уравнения .

    Заметим, что количество решений уравнения равно количеству точек пересечения графиков функций и y = a.

    График функции показан на рис.1.

    y = a – это горизонтальная прямая. По графику несложно установить количество точек пересечения в зависимости от a (например, при a = 11 – две точки пересечения; при a = 2 – восемь точек пересечения).

    Ответ: при a 25/4 – два решения.

    3. Метод решения относительно параметра.

    При решении этим способом переменные х и а принимаются равноправными, и выбирается та переменная, относительно которой аналитическое решение становится более простым. После упрощений нужно вернуться к исходному смыслу переменных х и а и закончить решение.

    Пример 3. Найти все значения параметра а , при каждом из которых уравнение = —ax +3a +2 имеет единственное решение.

    Будем решать это уравнение заменой переменных. Пусть = t , t ≥ 0 , тогда x = t 2 + 8 и уравнение примет вид at 2 + t + 5a – 2 = 0 . Теперь задача состоит в том, чтобы найти все а, при которых уравнение at 2 + t + 5a – 2 = 0 имеет единственное неотрицательное решение. Это имеет место в следующих случаях.

    1) Если а = 0, то уравнение имеет единственное решение t = 2.

    Решение некоторых типов уравнений и неравенств с параметрами.

    Задачи с параметрами помогают в формировании логического мышления, в приобретении навыков исследовательской деятельности.

    Решение каждой задачи своеобразно и требует к себе индивидуального, нестандартного подхода, поскольку не существует единого способа решения таких задач.

    Задача № 1. При каких значениях параметра b уравнение не имеет корней?

    Ⅱ . Степенные уравнения, неравенства и их системы.

    Задача №2. Найти все значения параметра a, при которых множество решений неравенства:

    содержит число 6, а также содержит два отрезка длиной 6, не имеющие общих точек.

    .

    Преобразуем обе части неравенства.

    Для того, чтобы множество решений неравенства содержало число 6, необходимо и достаточно выполнение условия:

    Рис.4

    При a > 6 множество решений неравенства: .

    Интервал (0;5) не может содержать ни одного отрезка длины 6. Значит, два непересекающихся отрезка длины 6 должны содержаться в интервале (5; a).

    Это

    Ⅲ . Показательные уравнения, неравенства и системы.

    Задача № 3. В области определения функции взяли все целые положительные числа и сложили их. Найти все значения, при которых такая сумма будет больше 5, но меньше 10.

    1) Графиком дробно-линейной функции является гипербола. По условию x > 0. При неограниченном возрастании х дробь монотонно убывает и приближается к нулю, а значения функции z возрастают и приближаются к 5. Кроме того, z(0) = 1.

    2) По определению степени область определения D(y) состоит из решений неравенства . При a = 1 получаем неравенство, у которого решений нет. Поэтому функция у нигде не определена.

    3) При 0 0 , то z(x) > z(0) = 1 . Значит, каждое положительное значение х является решением неравенства . Поэтому для таких а указанную в условии сумму нельзя найти.

    4) При a > 1 показательная функция с основанием а возрастает и неравенство равносильно неравенству . Если a ≥ 5 , то любое положительное число является его решением, и указанную в условии сумму нельзя найти. Если 1 . Так как возрастает на , то z(3) .

    Решение иррациональных уравнений и неравенств, а также уравнений, неравенств и систем, содержащих модули рассмотрены в Приложении 1.

    Задачи с параметрами являются сложными потому, что не существует единого алгоритма их решения. Спецификой подобных задач является то, что наряду с неизвестными величинами в них фигурируют параметры, численные значения которых не указаны конкретно, но считаются известными и заданными на некотором числовом множестве. При этом значения параметров существенно влияют на логический и технический ход решения задачи и форму ответа.

    По статистике многие из выпускников не приступают к решению задач с параметрами на ЕГЭ. По данным ФИПИ всего 10% выпускников приступают к решению таких задач, и процент их верного решения невысок: 2–3%, поэтому приобретение навыков решения трудных, нестандартных заданий, в том числе задач с параметрами, учащимися школ по-прежнему остается актуальным.

    Подготовка к ЕГЭЗадачи с параметрами

    Данная тема выделена в самостоятельный раздел из раздела Литература по математике для поступающих в вузы(часть I) с целью разгрузить последний и упорядочить информацию в нем. Новые позиции отмечены голубым знаком NEW.

    9-11-2011Высоцкий В. С. Задачи с параметрами при подготовке к ЕГЭ.М.: Научный мир, 2011. — 316 с
    29-09-2011Натяганов В.Л., Лужина Л.М. Методы решения задач с параметрами — М.: Изд-во МГУ, 2003. — 368 с.
    28-09-2011Горнштейн П.И., Полонский В. В., Якир М. С. Задачи с параметрами Изд. 3-е, перераб., доп. 2005, 328 стр.

    Амелькин В. В., Рабцевич В. Л. Задачи с параметрами: Справ. пособие по математике.Мн.: ООО «Асар», 2004. — 464 с.; ил.; 3-е изд. доработ. ISBN 985-6711-03-7.
    Пособие содержит 727 задач с параметрами и предназначено для углубленного изучения математики в средней школе и для подготовки к конкурсным экзаменам в ВУЗы.
    Скачать (divu/rar, 600 dpi, 2,32 Мб)ifolder.ru || mediafire.com

    Голубев В.И. Решение сложных и нестандартных задач по математике.— 2007. — 252 с: ил.
    Пособие посвящено методам решения задач повышенной сложности по алгебре и началам анализа. Основная часть задач, рассмотренных в книге, взята из вариантов вступительных экзаменов на различные факультеты вузов, предъявляющих высокие требования к знаниям по математике (МГУ, МИРЭА, МФТИ и др.). Основной акцент в этой книге сделан на изложение малоизвестных эффективных технологий решения нестандартных задач, таких, например, как метод трех точек, метод замены множителей, метод минимакса, информация по которым впервые представлена не в периодической печати. Описаны малоизвестные технические приемы, используемые при решении задач для обеспечения высокого темпа продвижения к ответу. Очень много задач с параметром. Главная цель книги состоит в снятии комплекса страха у абитуриентов и учителей при попытках овладения идеями и методами решения нестандартных задач.
    Материал книги составляет часть многочисленных лекций автора для школьников и преподавателей в различных регионах страны.
    Пособие рассчитано на учителей и учащихся общеобразовательных школ, студентов педагогических вузов, абитуриентов.
    Книга предоставлена Robot
    Скачать (divu/rar, 600 dpi, 2,73 Мб) Рапида || http://ifolder.ru || mediafire.com

    Горнштейн П.И., Полонский В.Б., Якир М.С. Задачи с параметрами. — К.: РИА «Текст»; МП «ОКО», 1992. -290 с.
    В книге рассматриваются аналитические, функциональные и графические методы решения задач с параметрами на примере более 700 задач, большинство из которых предлагалось на вступительных экзаменах в ведущие вузы. Материал пособия помимо деления на главы и параграфы разбит на пункты, посвященные определенным типам задач или приемам их решения. Часть задач разбирается очень подробно, при этом демонстрируется подчас несколько методов решения. Ко всем упражнениям приведены ответы.
    Для преподавателей математики, студентов педагогических вузов, слушателей подготовительных отделений, абитуриентов, старшеклассников.
    Книга предоставлена Robot
    Скачать (divu/rar, 600 dpi, 4,34 Мб) Рапида || ifolder.ru || mediafire.com

    Дорофеев Г.В. Квадратный трехчлен в задачах. — Львов, журнал Квантор, 1991, № 2. — 104 с.
    Содержание: Азбука квадратного трехчлена. Квадратный трехчлен в неявном виде. Коэффициенты, корни и значення квадратного трехчлена. «Запрещенные» корни квадратного трехчлена. Отбор корней квадратного трехчлена на луче. Отбор корней квадратного трехчлена на конечном промежутке. Ответы, указания и решения.
    Скачать (divu/rar, 600 dpi+ocr, 1.07 Мб) mediafire || ifolder.ru

    Ефимов Е.А., Коломиец Л.В. Задачи с параметрами. Учебное пособие для факультета довузовской подготовки СГАУ. — Самара, 2006. — 64с.
    Учебное пособие предназначено для занятий со слушателями подготовительных курсов факультета довузовской подготовки СГАУ и самостоятельной работы абитуриентов.
    В учебное пособие включены все основные типы задач с параметрами, предлагаемых на вступительных экзаменах по математике в СГАУ, на централизованном тестировании и Едином государственном экзамене. Ко всем задачам приведены решения или ответы.
    Скачать (340 кб) ifolder.ru || mediafire.com

    Козко А.И., Чирский В.Г. Задачи с параметром и другие сложные задачи. — М., МЦНМО, 2007. — 296с.
    Книга посвящена решению задач с параметрами. Помимо стандартных сведений в ней приведены оригинальные методы и приемы решения различных сложных задач. Кроме того, в книге рассмотрены задачи, связанные с методом математической индукции, и задачи по стереометрии. Большинство разбираемых авторами задач взято из вариантов вступительных экзаменов в МГУ.
    Во второй части книги приведены варианты вступительных экзаменов 2003-2006 гг.
    Для учащихся старших классов, преподавателей математики и абитуриентов.
    Скачать 1,50 Мб ifolder.ru ||mediafire.com

    Козко А. И., Панферов В. С, Сергеев И. Н., Чирский В. Г. ЕГЭ 2011. Математика. Задача С5. Задачи с параметром / Под ред. А. Л. Семенова и И. В.Ященко. — М.: МЦНМО, 2011.-144 с. ISBN 978-5-94057-667-9
    Скачать (1.00 Мб, djvu/rar,600dpi+OCR) ifolder.ru || mediafire.com>

    Корянов А.Г. Математика ЕГЭ 2010. Задания С5. — 71 с.
    Сборник задач с ответами, указаниями и решениями. Представлены аналитические и функционально-графические методы
    Скачать (pdf, 1,3 mb) сайт Ларина А.А.
    Корянов А.Г., Прокофьев А.А. МАТЕМАТИКА ЕГЭ 2011(типовые задания С5) Уравнения и неравенства с параметрами: количество решений
    Скачать пособие

    Подготовка к ЕГЭЗадачи с параметрами

    Шевкин: Математика. Трудные задания ЕГЭ. Задачи с параметром

    Высоцкий В. С. Задачи с параметрами при подготовке к ЕГЭ.
    М.: Научный мир, 2011. — 316 с: 262 ил. ISBN 978-5-91522-257-0
    Книга посвящена решению задач с параметрами, которые для многих школьников традиционно являются задачами повышенной трудности. Задачи классифицированы как по типам, так и по методам решений, начиная от простейших задач до трудных, встречающихся на олимпиадах, ЕГЭ и вступительных экзаменах в МГУ.
    Для учащихся 8-11 классов, учителей школ, гимназий, лицеев, слушателей подготовительных курсов.
    За книгу большое спасибо loa (Ольге Александровне) с форума Ларина
    Скачать (djvu, 2.46 Мб) ifolder.ru || narod.ru
    NEW Новое издание. Горнштейн П.И., Полонский В. В., Якир М. С. Задачи с параметрами Изд. 3-е, перераб., доп.
    Серия: Кладовая школьной математики, 2005, 328 стр., ISBN: 5-89237-021-6
    Книга содержит более 700 задач с параметрами, большинство из которых предлагалось на вступительных экзаменах в ведущие вузы. Материал пособия, помимо деления на главы и параграфы, разбит на пункты, посвященные определенным типам задач или приемам их решения. Ко всем упражнениям приведены ответы, наиболее сложные задачи снабжены подробными указаниями.
    Для преподавателей математики, студентов педагогических вузов, слушателей подготовительных отделений, абитуриентов, старшеклассников.
    Обложка от издания 2007 года.
    За книгу большое спасибо loa (Ольге Александровне) с форума Ларина
    Скачать (djvu, 3,7 Мб) narod.ru || onlinedisk.ru
    Иванов С. О. Математика. Учимся решать задачи с параметром. Подготовка к ЕГЭ: задание С5 / С. О. Иванов, Е. А. Войта, А. С. Ковалевская, Л. С. Ольховая; под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова. — Ростов-на-Дону: Легион-М, 2011. — 48с. — (Готовимся к ЕГЭ). ISBN 978-5-91724-075-6
    Предлагаемое пособие «Математика. Учимся решать задачи с параметром. Подготовка к ЕГЭ: задание С5» адресовано учащимся 10— 11-х классов, а также их преподавателям. Оно состоит из вариантов тестовых заданий по отдельным темам: «Алгебраические выражения», «Уравнения», «Неравенства» и др., которые являются традиционными в курсе математики и поэтому входят в ЕГЭ.
    Согласно спецификации ЕГЭ-2011, задание С5 является уравнением, неравенством или системой с параметром. Однако начинать подготовку к ЕГЭ с решения задач подобного уровня неразумно из-за высокого уровня их трудности. В связи с этим авторы предлагают подготовительные тесты по основным темам, материал которых используется при решении задач с параметрами. Последняя глава содержит задачи, аналогичные заданиям С5 на предстоящем ЕГЭ.
    Помимо подготовки к ЕГЭ, пособие может быть использовано для промежуточного контроля по теме «Задания с параметром» при изучении математики на профильном уровне.
    Книга предоставлена Robot
    Скачать (djvu/rar, 600dpi+ocr, 603.46 кб) ifolder.ru || mediafire.com
    ИванычДата: Понедельник, 09.09.2019, 10:06 | Сообщение # 1

    Александр Шевкин: Математика. Трудные задания ЕГЭ. Задачи с параметром. Профильный уровень

    Оригинальное изображение обложки книги в печатном формате

    Автор: Шевкин Александр Владимирович
    Редактор: Кузнецова Л. В.

    Единый Государственный Экзамен на 2019 — 2020 учебный год. Официальный сайт. КИМ. Открытый банк заданий. ФИПИ. ФГОС. ОРКСЭ. МЦКО. Школа России. 21 век. ГДЗ и Решебник для помощи ученикам и учителям. Перспектива. Школа 2100. Планета знаний. Россия. Беларусь. Украина

    Как правильно и быстро подготовиться к ЕГЭ? Это вы сможете узнать на данной странице. Для успешной подготовки к ЕГЭ 2020 года, ученикам 11 класса необходимо хорошо подготовиться к единому государственному экзамену, сдать его на пятерку и получить максимальное количество баллов на самом главном экзамене в школе. Потому что от результатов ЕГЭ зависит поступит ученик в ВУЗ или нет. Каждый год институты и унверситеты поднимают проходной бал для поступления абитуриентов в свои заведения. Проходной бал на бюджетные места в ВУЗы России в прошлом годы вы можете посмотреть ЗДЕСЬ

    Основной рекомендуемый учебник, решебник и ГДЗ в этом году для подготовки к экзаменам ЕГЭ — это новый сборник Александр Шевкин: Математика. Трудные задания ЕГЭ. Задачи с параметром. Профильный уровень

    В этом разделе для учителей и школьников можно купить или бесплатно скачать электронную версию книги с ответами в формате PDF и потом ее распечатать на принтере. Затем в свое свободное время можно решать задачи из него онлайн и офлайн. А также проверить сразу решения и правильные ответы на задачи. Сборник заданий соответствует и удовлетворяет всем нормам КИМов школы России, ФИПИ и ФГОС по профильному и базовому уровню. После подготовки к ЕГЭ2020 вы сможете смело сказать себе, что я решу ЕГЭ на 100 баллов.

    Скачать демоверсии и КИМы ЕГЭ 2020 по всем предметам в 11 классе

    В новом сборнике для подготовки к ЕГЭ-2020 вы можете изучить:

    Учебное пособие предназначено для подготовки к Единому государственному экзамену по математике профильного уровня. Издание включает разбор заданий № 18 с параметром, образцы решения и задания для самостоятельного решения. Начинается пособие с разбора простых задач, охватывающего разные идеи решений, затем рассматриваются более сложные задачи. Книга поможет школьникам подготовиться к одному из самых сложных заданий и отработать навык решения подобных задач. Пособие может быть использовано учителями для подготовки учащихся к экзамену по математике в форме ЕГЭ, а также старшеклассниками ? для самоподготовки и самоконтроля.

    Наличие: Есть в наличии на складе

    Заказать данный учебник за наличный или безналичный расчет с доставкой можно в Интернет-магазине или просто нажать кнопку КУПИТЬ

    Цена уточняется (После заказа, вам позвонит консультант и скажет стоимость книги)

    Скачать бесплатно полностью электронный учебник Александр Шевкин: Математика. Трудные задания ЕГЭ. Задачи с параметром. Профильный уровень

    Скачать бесплатно правильные ответы, пояснения и решения на задания из сборника Александр Шевкин: Математика. Трудные задания ЕГЭ. Задачи с параметром. Профильный уровень

    Читать еще:  Как вырастить можжевельник из ветки
    Ссылка на основную публикацию
    Adblock
    detector