1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Основы теория ламинарного течения жидкости

Основы теория ламинарного течения жидкости

Определение законов сопротивления и значения

Критического числа Рейнольдса при ламинарном

И турбулентном режимах течения жидкости

Цель работы и содержание работы

Исследовать режимы течения жидкости в трубопроводах, определить критическое число Рейнольдса и характеристики сопротивления движению жидкости по трубопроводу.

2.2 Краткие теоретические сведения

Виды режимов течения

В реальном потоке жидкости, как показывают многочисленные опыты, возможны разные течения жидкости.

1. Ламинарное (слоистое) течение, в котором частицы жидкости двигаются в своих слоях не перемешиваясь. При этом сами частицы внутри слоя имеет вращательное движение (рисунок 2.1) за счет градиента скоростей .

Рисунок 2.1

При увеличении скорости течения жидкости – скорость V увеличивается, градиент скорости , соответственно. Увеличивается вращательное движение частиц, при этом скорость более удаленного от стенки слоя еще более увеличивается (рисунок 2.2), a скорость пристеночных слоев еще более уменьшается.

Рисунок 2.2

Соответственно в пристеночных слоях увеличивается гидромеханическое давление (по уравнению Бернулли). Под действием разности давления вращающаяся частица перемешается в толщу ядра (рисунок 2.3), образуя второй режим течения жидкости – турбулентное течение.

Рисунок 2.3

2. Турбулентное течение жидкости сопровождается интенсивным перемешиванием жидкости и пульсацией скоростей и давлений (рисунок 2.4).

Рисунок 2.4

Немецкий ученый О. Рейнольдс в 1883 г. доказал, что переход от ламинарного течения жидкости к турбулентному зависит от вязкости жидкости, ее скорости и характерного размера (диаметра) трубы.

Критическая скорость, при которой ламинарное течение переходит в турбулентное, равна:

,

где K – универсальный коэффициент пропорциональности (он одинаков для всех жидкостей и диаметров труб); d – диаметр трубопровода.

Этот безразмерный коэффициент был назван критическим числом Рейнольдса:

. (2.1)

Как показывают опыты, для жидкостей . Очевидно, число Re может служить критерием, позволяющих судить о режиме течения жидкости в трубах, так

при течение ламинарное,

при течение турбулентное.

На практике ламинарное течение наблюдается при течении вязких жидкостей (в гидро- и маслосистемах самолета). Турбулентное течение наблюдается в водопроводе, в топливных (керосин, бензин, спирт) системах.

В гидравлических системах наблюдается еще один вид течения жидкости – кавитационный режим течения. Это движение жидкости, связанное с изменением ее агрегатного состояния (превращение в газ, выделение растворенного воздуха и газов). Это явление наблюдается тогда, когда местное статическое давление снижается до давления упругости насыщенных паров жидкости, то есть при (рисунок 2.5)

Рисунок 2.5

В этом случае в данной месте потока начинается интенсивное парообразование и выделение воздуха и газов. В потоке образуются газовые полости («кавитас» – полость). Такое течение жидкости называется кавитационным. Кавитация – явление опасное, ибо, во-первых, ведет к резкому уменьшению расхода жидкости (а следовательно, и к возможному выключению двигателя при кавитации в топливной системе), и, во-вторых, пузырьки газа, воздействуя на лопатки насосов, разрушают их.

В топливных системах борются с кавитацией путем повышения давления в баках или системе с помощью подкачивающих насосов и системы наддува баков. Это явление необходимо учитывать при проектировании и конструировании гидросистем летательных аппаратов (особенно топливной). Дело в том, что по ряду причин эти системы соединены с атмосферой (система суфлирования). С подъемом на высоту давление над поверхностью емкостей систем уменьшается, следовательно, уменьшается статическое давление в трубопроводах. В сочетании с потерями давления на местных сопротивлениях и уменьшением статического давления при больших скоростях течения в трубопроводах возникает опасность появления кавитационных давлений.

Основы теория ламинарного течения жидкости

В трубах

Ламинарное течение является строго упорядоченным слоистым течением и подчиняется закону трения Ньютона:

(2.2)

Рассмотрим установившееся ламинарное течение жидкости в круглой прямой трубе (рисунок 2.6), расположенной горизонтально ( ). Поскольку труба цилиндрическая, то и в этом случае уравнение Бернулли примет вид:

, (2.3)

. (2.4)

Выделим в жидкости (рисунок 2.6) объем жидкости радиусом r и длиной l. Очевидно, постоянство скорости будет обеспечено, если сумма сил давления и трения, действующая на выделенный объем, будет равна нулю, то есть

,

. (2.5)

Касательные напряжения в поперечном сечении трубы изменяются по линейному закону пропорционально радиусу (рисунок 2.6).

Рисунок 2.6

Приравнивая (2.4) и (2.5), получим:

,

или, интегрируя от r = 0 до r = r, получаем закон распределения скоростей по сечению круглой трубы:

. (2.6)

Расход жидкости определяется как dQ = VdS. Подставляя в последнее выражение (2.6) и учитывая, что dS = 2prdr, после интегрирования получаем:

. (2.7)

Следовательно, расход жидкости при ламинарном течении пропорционален радиусу трубы в четвертой степени.

. (2.8)

Сравнивая (2.6) и (2.8), получаем, что

. (2.9)

Для определения потерь напора на трение – , определим из (2.7):

. (2.10)

(2.11)

или, заменяя m через nr и g через qr, получим

(2.12)

Таким образом, при ламинарном течении в круглой трубе потери налога за трение пропорциональны расходу жидкости и вязкости, и обратно пропорциональны диаметру трубы в четвертой степени. Чем меньше диаметр трубы, тем больше потери напора на трение.

Ранее мы условилась, что потери на гидросопротивления всегда пропорциональны квадрату скорости жидкости. Для получения такой зависимости соответственно преобразуем выражение (2.12), учитывая, что

, а .

После соответствующих преобразований получим:

, (2.13)

, (2.14)

(2.15)

– коэффициент сопротивления трения при ламинарном течении.

Осталось определять коэффициент , учитывающий неравномерность распределения скоростей в сечении трубы для уравнения Бернулли.

В учебнике Б.Е. Некрасова показано, что

. (2.16)

Поскольку , то dS=2prdr, подставляя в (2.16) и (2.8), после сокращения получим:

. (2.17)

В заключение следует отметить, что если жидкость из резервуара входит в трубу, постоянного диаметра и движется в ней ламинарным потоком, то формирование параболического профиля скоростей осуществляется постепенно, на некотором начальном участке (рисунок 2.7).

Рисунок 2.7

Полученные выше соотношения справедливы лишь на участке, где . Определение потерь напора на участке осуществляется по тем не формулам, но с поправочным коэффициентом :

, (2.18)

где определяется по графику (рисунок 2.8).

Рисунок 2.8

Следует отметить, что длина начального участка относительно невелика по сравнению с длиной трубопровода, и поэтому в расчетах иногда считают, что характеристика течения та же, что и после переходного участка, то есть считают .

Дата добавления: 2016-09-03 ; просмотров: 906 | Нарушение авторских прав

Ламинарное и турбулентное течение. Режимы течения жидкости

Изучение свойств потоков жидкостей и газов очень важно для промышленности и коммунального хозяйства. Ламинарное и турбулентное течение сказывается на скорости транспортировки воды, нефти, природного газа по трубопроводам различного назначения, влияет на другие параметры. Этими проблемами занимается наука гидродинамика.

Классификация

В научной среде режимы течения жидкости и газов разделяют на два совершенно разных класса:

Также различают переходную стадию. Кстати, термин «жидкость» имеет широкое значение: она может быть несжимаемой (это собственно жидкость), сжимаемой (газ), проводящей и т. д.

История вопроса

Еще Менделеевым в 1880 году была высказана идея о существовании двух противоположных режимов течений. Более подробно этот вопрос изучил британский физик и инженер Осборн Рейнольдс, завершив исследования в 1883 году. Сначала практически, а затем с помощью формул он установил, что при невысокой скорости течения перемещение жидкостей приобретает ламинарную форму: слои (потоки частиц) почти не перемешиваются и движутся по параллельным траекториям. Однако после преодоления некоего критического значения (для различных условий оно разное), названного числом Рейнольдса, режимы течения жидкости меняются: струйный поток становится хаотичным, вихревым – то есть, турбулентным. Как оказалось, эти параметры в определенной степени свойственны и газам.

Практические расчеты английского ученого показали, что поведение, например, воды, сильно зависит от формы и размеров резервуара (трубы, русла, капилляра и т.д.), по которому она течет. В трубах, имеющих круглое сечение (такие используют для монтажа напорных трубопроводов), свое число Рейнольдса – формула критического состояния описывается так: Re = 2300. Для течения по открытому руслу число Рейнольдса другое: Re = 900. При меньших значениях Re течение будет упорядоченным, при больших – хаотичным.

Ламинарное течение

Отличие ламинарного течения от турбулентного состоит в характере и направлении водных (газовых) потоков. Они перемещаются слоями, не смешиваясь и без пульсаций. Другими словами, движение проходит равномерно, без беспорядочных скачков давления, направления и скорости.

Ламинарное течение жидкости образуется, например, в узких кровеносных сосудах живых существ, капиллярах растений и в сопоставимых условиях, при течении очень вязких жидкостей (мазута по трубопроводу). Чтобы наглядно увидеть струйный поток, достаточно немного приоткрыть водопроводный кран – вода будет течь спокойно, равномерно, не смешиваясь. Если краник отвернуть до конца, давление в системе повысится и течение приобретет хаотичный характер.

Турбулентное течение

В отличие от ламинарного, в котором близлежащие частицы движутся по практически параллельным траекториям, турбулентное течение жидкости носит неупорядоченный характер. Если использовать подход Лагранжа, то траектории частиц могут произвольно пересекаться и вести себя достаточно непредсказуемо. Движения жидкостей и газов в этих условиях всегда нестационарные, причем параметры этих нестационарностей могут иметь весьма широкий диапазон.

Читать еще:  Утепление полов по грунту

Как ламинарный режим течения газа переходит в турбулентный, можно отследить на примере струйки дыма горящей сигареты в неподвижном воздухе. Вначале частицы движутся практически параллельно по неизменяемым во времени траекториям. Дым кажется неподвижным. Потом в каком-то месте вдруг возникают крупные вихри, которые движутся совершенно хаотически. Эти вихри распадаются на более мелкие, те – на еще более мелкие и так далее. В конце концов, дым практически смешивается с окружающим воздухом.

Циклы турбулентности

Вышеописанный пример является хрестоматийным, и из его наблюдения ученые сделали следующие выводы:

  1. Ламинарное и турбулентное течение имеют вероятностный характер: переход от одного режима к другому происходит не в точно заданном месте, а в достаточно произвольном, случайном месте.
  2. Сначала возникают крупные вихри, размер которых больше, чем размер струйки дыма. Движение становится нестационарным и сильно анизотропным. Крупные потоки теряют устойчивость и распадаются на все более мелкие. Таким образом, возникает целая иерархия вихрей. Энергия их движения передается от крупных к мелким, и в конце этого процесса исчезает – происходит диссипация энергии при мелких масштабах.
  3. Турбулентный режим течения носит случайный характер: тот или иной вихрь может оказаться в совершенно произвольном, непредсказуемом месте.
  4. Смешение дыма с окружающим воздухом практически не происходит при ламинарном режиме, а при турбулентном – носит очень интенсивный характер.
  5. Несмотря на то, что граничные условия стационарны, сама турбулентность носит ярко выраженный нестационарный характер – все газодинамические параметры меняются во времени.

Есть и еще одно важное свойство турбулентности: оно всегда трехмерно. Даже если рассматривать одномерное течение в трубе или двумерный пограничный слой, все равно движение турбулентных вихрей происходит в направлениях всех трех координатных осей.

Число Рейнольдса: формула

Переход от ламинарности к турбулентности характеризуется так называемым критическим числом Рейнольдса:

где ρ – плотность потока, u – характерная скорость потока; L – характерный размер потока, µ – коэффициент динамической вязкости, cr – течение по трубе с круглым сечением.

Например, для течения со скоростью u в трубе в качестве L используется диаметр трубы. Осборн Рейнольдс показал, что в этом случае 2300 5 4 . Если же L определяется как толщина пограничного слоя, то 2700 2 /(µ×(u/L)).

В числителе стоит удвоенный скоростной напор, а в знаменателе – величина, имеющая порядок напряжения трения, если в качестве L берется толщина пограничного слоя. Скоростной напор стремится разрушить равновесие, а силы трения противодействуют этому. Впрочем, неясно, почему силы инерции (или скоростной напор) приводят к изменениям только тогда, когда они в 1000 раз больше сил вязкости.

Расчеты и факты

Вероятно, более удобно было бы использовать в качестве характерной скорости в Recr не абсолютную скорость потока u, а возмущение скорости. В этом случае критическое число Рейнольдса составит порядка 10, то есть при превышении возмущения скоростного напора над вязкими напряжениями в 5 раз ламинарное течение жидкости перетекает в турбулентное. Данное определение Re по мнению ряда ученых хорошо объясняет следующие экспериментально подтвержденные факты.

Для идеально равномерного профиля скорости на идеально гладкой поверхности традиционно определяемое число Recr стремится к бесконечности, то есть перехода к турбулентности фактически не наблюдается. А вот число Рейнольдса, определяемое по величине возмущения скорости меньше критического, которое равно 10.

При наличии искусственных турбулизаторов, вызывающих всплеск скорости, сравнимый с основной скоростью, поток становится турбулентным при гораздо более низких значениях числа Рейнольдса, чем Recr, определенное по абсолютному значению скорости. Это позволяет использовать значение коэффициента Recr = 10, где в качестве характерной скорости используется абсолютное значение возмущения скорости, вызываемое указанными выше причинами.

Устойчивость режима ламинарного течения в трубопроводе

Ламинарное и турбулентное течение свойственно всем видам жидкостей и газов в разных условиях. В природе ламинарные течения встречаются редко и характерны, например, для узких подземных потоков в равнинных условиях. Гораздо больше этот вопрос волнует ученых в контексте практического применения для транспортировки по трубопроводам воды, нефти, газа и других технических жидкостей.

Вопрос устойчивости ламинарного течения тесно связан с исследованием возмущенного движения основного течения. Установлено, что оно подвергается воздействию так называемых малых возмущений. В зависимости от того, угасают или растут они со временем, основное течение считается устойчивым либо неустойчивым.

Течение сжимаемых и не сжимаемых жидкостей

Одним из факторов, влияющих на ламинарное и турбулентное течение жидкости, является ее сжимаемость. Это свойство жидкости особенно важно при изучении устойчивости нестационарных процессов при быстром изменении основного течения.

Исследования показывают, что ламинарное течение несжимаемой жидкости в трубах цилиндрического сечения устойчиво к относительно малым осесимметричным и неосесимметричным возмущениям во времени и пространстве.

В последнее время проводятся расчеты по влиянию осесимметричных возмущений на устойчивость течения во входной части цилиндрической трубы, где основное течение находится в зависимости от двух координат. При этом координата по оси трубы рассматривается как параметр, от которого зависит профиль скоростей по радиусу трубы основного течения.

Вывод

Несмотря на столетия изучения, нельзя сказать, что и ламинарное, и турбулентное течение досконально изучены. Экспериментальные исследования на микроуровне ставят новые вопросы, требующие аргументированного расчетного обоснования. Характер исследований носит и прикладную пользу: в мире проложены тысячи километров водо-, нефте-, газо-, продуктопроводов. Чем больше будет внедряться технических решений по уменьшению турбулентности при транспортировке, тем более эффективной она будет.

ЛАМИНАРНОЕ ТЕЧЕНИЕ

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

(от лат. lamina — пластинка) — упорядоченный режим течения вязкой жидкости (или газа), характеризующийся отсутствием перемешивания между соседними слоями жидкости. Условия, при к-рых может происходить устойчивое, т. е. не нарушающееся от случайных возмущений, Л. т., зависят от значения безразмерного Рейнольдса числа Re. Для каждого вида течения существует такое число R е Кр , наз. нижним критич. числом Рейнольдса, что при любом Re кp Л. т. является устойчивым и практически осуществляется; значение R е кр обычно определяется экспериментально. При R е>R е кр , принимая особые меры для предотвращения случайных возмущений, можно тоже получить Л. т., но оно не будет устойчивым и, когда возникнут возмущения, перейдёт в неупорядоченное турбулентное течение. Теоретически Л. т. изучаются с помощью Навье — Стокса уравнений движения вязкой жидкости. Точные решения этих ур-ний удаётся получить лишь в немногих частных случаях, и обычно при решении конкретных задач используют те или иные приближённые методы.

Представление об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения R е Кр 2200, где Re= ( средняя по расходу скорость жидкости, d — диаметр трубы, — кинематич. коэф. вязкости, — динамич. коэф. вязкости, — плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Напр., для воды (=10 -6 м 2 /с при 20° С) устойчивое Л. т. с =1 м/с возможно лишь в трубках диаметром не более 2,2 мм.

При Л. т. в неограниченно длинной трубе скорость в любом сечении трубы изменяется по закону (1 — —r 2 / а 2 ), где а — радиус трубы, r — расстояние от оси, — осевая (численно максимальная) скорость течения; соответствующий параболич. профиль скоростей показан на рис. а. Напряжение трения изменяется вдоль радиуса по линейному закону где = — напряжение трения на стенке трубы. Для преодоления сил вязкого трения в трубе при равномерном движении должен иметь место продольный перепад давления, выражаемый обычно равенством P1-P2 где p1 и р 2 давления в к.-н. двух поперечных сечениях, находящихся на расстоянии l друг от друга, — коэф. сопротивления, зависящий от для Л. т. . Секундный расход жидкости в трубе при Л. т. определяет Пуазейля закон. В трубах конечной длины описанное Л. т. устанавливается не сразу и в начале трубы имеется т. н. входной участок, на к-ром профиль скоростей постепенно преобразуется в параболический. Приближённо длина входного участка

Распределение скоростей по сечению трубы: а — при ламинарном течении; б — при турбулентном течении.

Когда при течение становится турбулентным, существенно изменяются структура потока, профиль скоростей (рис., 6 )и закон сопротивления, т. е. зависимость от Re (см. Гидродинамическое сопротивление).

Кроме труб Л. т. имеет место в слое смазки в подшипниках, вблизи поверхности тел, обтекаемых маловязкой жидкостью (см. Пограничный слой), при медленном обтекании тел малых размеров очень вязкой жидкостью (см., в частности, Стокса формула). Теория Л. т. применяется также в вискозиметрии, при изучении теплообмена в движущейся вязкой жидкости, при изучении движения капель и пузырьков в жидкой среде, при рассмотрении течений в тонких плёнках жидкости и при решении ряда др. задач физики и физ. химии.

Читать еще:  Соединение трубопроводов из полипропиленовых труб

Лит.: Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954; Лойцянский Л. Г., Механика жидкости и газа, 6 изд., М., 1987; Тар г С. М., Основные задачи теории ламинарных течений, М.- Л., 1951; Слезкин Н. А., Динамика вязкой несжимаемой жидкости, М., 1955, гл. 4 — 11. С. М. Тарг.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

ТЕОРИЯ ЛАМИНАРНОГО ТЕЧЕНИЯ ЖИДКОСТИ В КРУГЛОЙ ТРУБЕ

Ламинарное течение является строго упорядоченным слоистым течением без перемешивания жидкости; оно подчиняется закону трения Ньютона и вполне опре­деляется этим законом. Поэтому теория ламинарного течения жид­кости основывается на законе трения Ньютона.

Рассмотрим установившееся ламинарное течение жидкости в прямой круглой цилиндрической трубе с внутренним диаметром d=2r. Чтобы исключить влияние силы тяжести и этим упростить вывод, воспользуемся трубой, расположенной горизонтально. До­статочно далеко от входа в нее выделим отрезок потока длиной l между сечениями 1—1 и 2—2 (рис. 45).

Пусть в первом сечении давление равно p1, а во втором p2. Ввиду постоянства диаметра трубы скорость и коэффициент a будут неизменными вдоль потока, поэтому уравнение Бернулли для выбранных сечений примет вид

где hтр—потеря напора на трение.

Отсюда

что и показывают пьезометры, установленные в сечениях.

В потоке жидкости выделим цилиндрический объем радиуса r, соосный с трубой и имеющий основания в выбранных сечениях.

Запишем уравнение равномерного движения выделенного объ­ема жидкости в трубе, т. е. равенство нулю суммы двух сил, дей­ствующих на объем: силы давления и силы сопротивления. Обо­значая касательное напряжение на боковой поверхности цилиндра через t, получим

Из формулы видно, что касательные напряжения в поперечном сечении трубы изменяются по линейному закону в функции ра­диуса. Эпюра касательного напряжения показана на том же рис. 45 слева.

Значение скорости на окружности радиуса r таково:

Это есть закон распределения скоростей по сечению круглой трубы при ламинарном течении. Кривая, изображающая эпюру скоростей, оказывается параболой второй степени.

Максимальная скорость в центре сечения (при r=0) равна

Входящее в формулу (6. 1) отношение ртр/l, как видно из рис. 45, представляет собой гидравлический (пьезометрический) уклон, умноженный на g. Эта величина является постоянной вдоль прямой трубы постоянного диаметра.

Для расхода будем иметь:

Найдем среднюю по сечению скорость делением расхода на площадь:

.Сравнивая это выражение с формулой (6.2), приходим к вы­воду, что средняя скорость при ламинарном течении в два раза меньше максимальной, т. е.

Для получения закона сопротивления, т. е. выражения потери напора на трение hтр через расход и размеры трубы, определим ртр из формулы (6. 3):

Разделив уравнение на g, получим потерю напора:

Заменяя m через nr и g через gr, а также переходя от r к d=2r, окончательно получим

Полученный закон сопротивления показывает, что при ламинар­ном течении в круглой трубе потеря напора на трение пропорцио­нальна расходу (скорости) и вязкости в первой степени и обратно пропорциональна диаметру в четвертой степени. Этот закон, часто называемый законом Пуазейля — Гагена, используется для рас­чета трубопроводов с ламинарным режимом течения.

Индекс «л» при l поставлен для того, чтобы подчеркнуть, что здесь речь идет о ламинарном течении.

Следует иметь в виду, что потеря напора на трение при лами­нарном течении пропорциональна скорости в первой степени.

Коэффициент a, учитывающий неравномерность распре­деления скоростей в уравнении Бернулли, для случая стабилизи­рованного ламинарного течения жидкости в круглой трубе:

Итак, истинная кинетическая энергия ламинарного потока с па­раболическим распределением скоростей в два раза превосходит кинетическую энергию того же потока, но при равномерном рас­пределении скоростей.

Таким же образом, можно показать, что секундное количество движения ламинарного потока с параболическим распределением скоростей в b раз больше количества движения того же потока, но при равномерном распределении скоростей, причем коэффициент равен постоянной величине:

Изложенная теория ламинарного течения жидкости в круглой трубе в общем хорошо подтверждается опытом, и выведенные за­коны сопротивления и распределения скоростей обычно не нуж­даются в каких-либо поправках, за исключением следующих слу­чаев.

1. При течении в начальном участке трубы, где происходит по­степенное установление параболического профиля скоростей. Со­противление на этом участке получается больше, чем на последую­щих участках трубы. Однако это обстоятельство учитывают лишь при расчете очень коротких труб.

2. При течении со значительным теплообменом, т. е. в том слу­чае, когда движение жидкости сопровождается ее нагреванием или охлаждением.

Ламинарное и турбулентное течение жидкости: описание, особенности и интересные факты

Гидродинамика является важнейшим разделом физики, который изучает законы движения жидкости в зависимости от внешних условий. Важным вопросом, который рассматривается в гидродинамике, является вопрос определения ламинарного и турбулентного течения жидкости.

Что такое жидкость?

Чтобы лучше понять вопрос ламинарного и турбулентного течения жидкости, необходимо для начала рассмотреть, что собой представляет эта субстанция.

Жидкостью в физике называют одно из 3-х агрегатных состояний материи, которое при заданных условиях способно сохранять свой объем, но которая при воздействии минимальных тангенциальных сил изменяет свою форму и начинает течь. В отличие от твердого тела, в жидкости не возникают силы сопротивления внешнему воздействию, которые бы стремились вернуть ее исходную форму. От газов же жидкость отличается тем, что она способна сохранять свой объем при постоянном внешнем давлении и температуре.

Параметры, описывающие свойства жидкостей

Вопрос ламинарного и турбулентного течение определяется, с одной стороны, свойствами системы, в которой рассматривается движение жидкости, с другой же стороны, характеристиками текучей субстанции. Приведем основные свойства жидкостей:

  • Плотность. Любая жидкость является однородной, поэтому для ее характеристики используют эту физическую величину, отражающую количество массы текучей субстанции, которая приходится на ее единицу объема.
  • Вязкость. Эта величина характеризует трение, которое возникает между различными слоями жидкости в процессе ее течения. Так как в жидкостях потенциальная энергия молекул приблизительно равна их кинетической энергии, то она обуславливает наличие некоторой вязкости в любых реальных текучих субстанциях. Это свойство жидкостей является причиной потери энергии в процессе их течения.
  • Сжимаемость. При увеличении внешнего давления всякая текучая субстанция уменьшает свой объем, однако, для жидкостей это давление должно быть достаточно велико, чтобы незначительно уменьшить занимаемый ими объем, поэтому для большинства практических случаев, это агрегатное состояние полагают несжимаемым.
  • Поверхностное натяжение. Эта величина определяется работой, которую необходимо затратить, чтобы образовать единицу поверхности жидкости. Существование поверхностного натяжения обусловлено наличием сил межмолекулярного взаимодействия в жидкостях, и определяет их капиллярные свойства.

Ламинарное течение

Изучая вопрос турбулентного и ламинарного течения, рассмотрим сначала последнее. Если для жидкости, которая находится в трубе, создать разность давлений на концах этой трубы, то она начнет течь. Если течение субстанции является спокойным, и каждые ее слой перемещается вдоль плавной траектории, которая не пересекает линии движения других слоев, тогда говорят о ламинарном режиме течения. Во время него каждая молекула жидкости перемещается вдоль трубы по определенной траектории.

Особенностями ламинарного течения являются следующие:

  • Перемешивания между отдельными слоями текучей субстанции не существует.
  • Слои, находящиеся ближе к оси трубы, движутся с большей скоростью, чем те, которые расположены на ее периферии. Этот факт связан с наличием сил трения между молекулами жидкости и внутренней поверхностью трубы.

Примером ламинарного течения являются параллельные струи воды, которые вытекают из душа. Если в ламинарный поток добавить несколько капель красителя, то можно видеть, как они вытягиваются в струю, которая продолжает свое плавное течение, не перемешиваясь в объеме жидкости.

Турбулентное течение

Этот режим кардинальным образом отличается от ламинарного. Турбулентное течение представляет собой хаотический поток, в котором каждая молекула движется по произвольной траектории, которую можно предсказать лишь в начальный момент времени. Для этого режима характерны завихрения и кругообразные движения небольших объемов в потоке жидкости. Тем не менее, несмотря на хаотичность траекторий отдельных молекул, общий поток движется в определенном направлении, и эту скорость можно характеризовать некоторой средней величиной.

Примером турбулентного течения является поток воды в горной реке. Если капнуть краситель в такой поток, то можно видеть, что в первоначальный момент времени появится струя, которая начнет испытывать искажения и небольшие завихрения, а затем исчезнет, перемешавшись во всем объеме жидкости.

Читать еще:  Полы по грунту правильные с утеплением

От чего зависит режим течения жидкости?

Ламинарный или турбулентный режимы течения зависят от соотношения двух величин: вязкости текучей субстанции, определяющей трение между слоями жидкости, и инерционных сил, которые описывают скорость потока. Чем более вязкая субстанция, и чем меньше скорость ее течения, тем выше вероятность появления ламинарного потока. Наоборот, если вязкость жидкости мала, а скорость ее передвижения велика, то поток будет турбулентным.

Ниже приводится видео, которое наглядно поясняет особенности рассматриваемых режимов течения субстанции.

Как определить режим течения?

Для практики этот вопрос очень важен, поскольку ответ на него связан с особенностями движения объектов в текучей среде и величиной энергетических потерь.

Переход между ламинарным и турбулентным режимами течения жидкости можно оценить, если использовать так называемые числа Рейнольдса. Они являются безразмерной величиной и названы в честь фамилии ирландского инженера и физика Осборна Рейнольдса, который в конце XIX века предложил их использовать для практического определения режима движения текучей субстанции.

Рассчитать число Рейнольдса (ламинарное и турбулентное течение жидкости в трубе), можно по следующей формуле: Re = ρ*D*v/μ, где ρ и μ — плотность и вязкость субстанции, соответственно, v — средняя скорость ее течения, D — диаметр трубы. В формуле числитель отражает инерционные силы или поток, а знаменатель определяет силы трения или вязкость. Отсюда можно сделать вывод, что, если число Рейнольдса для рассматриваемой системы имеет большую величину, значит, жидкость течет в турбулентном режиме, и наоборот, маленькие числа Рейнольдса говорят о существовании ламинарного потока.

Конкретные значения чисел Рейнольдса и их использование

Как было сказано выше, можно использовать для определения ламинарного и турбулентного течения число Рейнольдса. Проблема состоит в том, что оно зависит от особенностей системы, например, если труба будет иметь неровности на своей внутренней поверхности, то турбулентное течение воды в ней начнется при меньших скоростях потока, чем в гладкой.

Статистические данные многих экспериментов показали, что независимо от системы и природы текучей субстанции, если число Рейнольдса меньше 2000, то имеет место ламинарное движение, если же оно больше 4000, то поток становится турбулентным. Промежуточные значения чисел (от 2000 до 4000) говорят о наличии переходного режима.

Указанные числа Рейнольдса используются для определения движения различных технических объектов и аппаратов в текучих средах, для исследования течения воды по трубам разной формы, а также играют важную роль при изучении некоторых биологических процессов, например, движение микроорганизмов в кровяных сосудах человека.

Ламинарный режим движения жидкости

Содержание

Движение жидкости, наблюдаемое при малых скоростях, при котором отдельные струйки жидкости движутся параллельно друг другу и оси потока, называют ламинарный режим движения жидкости.

Ламинарный режим движения в опытах

Очень наглядное представление о ламинарном режиме движения жидкости можно получить из опыта Рейнольдса. Подробное описание здесь.

Жидкая среда вытекает из бака через прозрачную трубу и через кран уходит на слив. Таким образом жидкость течет с определенным небольшим и постоянным расходом.

На входе в трубу установлена тонкая трубочка по которой в центральную часть потока поступает подкрашенная среда.

При попадании краски в поток жидкости движущейся с небольшой скоростью красная краска будет двигаться ровной струйкой. Из этого опыта можно сделать вывод о слоистом течении жидкости, без перемешивания и вихреообразования.

Такой режим течения жидкости принято назыать ламинарным.

Рассмотрим основные закономерности ламинарного режима при равномерном движении в круглых трубах, ограничиваясь случаями, когда ось трубы горизонтальна.

При этом мы будем рассматривать уже сформировавшийся поток, т.е. поток на участке, начало которого находится от входного сечения трубы на расстоянии, обеспечивающем окончательный устойчивый вид распределения скоростей по сечению потока.

Имея ввиду, что ламинарный режим течения имеет слоистый(струйный) характер и происходит без перемешивания частиц, следует считать, что в ламинарном потоке будут иметь место только скорости, параллельные оси трубы, поперечные же скорости будут отсутствовать.

Можно представить себе, что в этом случае движущаяся жидкость как бы разделяется на бесконечно большое число бесконечно тонких цилиндрических слоев, параллельных оси трубопровода и движущихся один внутри другого с различными скоростями, увеличивающимися в направлении от стенок к оси трубы.

При этом скорость в слое, непосредственно соприкасающемся со стенками из-за эффекта прилипания равна нулю и достигает максимального значения в слое, движущемся по оси трубы.

Формула ламинарного режима течения

Принятая схема движения и введенные выше предположения позволяют теоретическим путем установить закон распределения скоростей в поперечном сечении потока при ламинарном режиме.

Для этого сделаем следующее. Обозначим внутренний радиус трубы через r и выберем начало координат в центре её поперечного сечения O, направив ось х по оси трубы, а ось z по вертикали.

Теперь выделим внутри трубы объем жидкости в виде цилиндра некоторого радиуса y длиной L и применим к нему уравнение Бернулли. Так как вследствии горизонтальности оси трубы z1=z2=0, то

где R – гидравлический радиус сечения выделенного цилиндрического объема = у/2

τ – единичная сила трения = — μ * dυ/dy

Подставляя значения R и τ в исходное уравнение получим

Задавая различные значения координаты y, можно вычислить скорости в любой точке сечения. Максимальная скорость, очевидно, будет при y=0, т.е. на оси трубы.

Для того, чтобы изобразить это уравнения графически, необходимо отложить в определенном масштабе от некоторой произвольной прямой АА скорости в виде отрезков, направленных по течению жидкости, и концы отрезков соединить плавной кривой.

Полученная кривая и представит собой кривую распределения скоростей в поперечном сечении потока.

График изменения силы трения τ по сечению выглядит совсем по другому. Таким образом, при ламинарном режиме в цилиндрической трубе скорости в поперечном сечении потока изменяются по параболическому закону, а касательные напряжения – по линейному.

Полученные результаты справедливы для участков труб с вполне развитым ламинарным течением. В действительности, жидкость, которая поступает в трубу, должна пройти от входного сечения определенный участок, прежде чем в трубе установится соответствующий ламинарному режиму параболический закон распределения скоростей.

Развитие ламинарного режима в трубе

Развитие ламинарного режима в трубе можно представить себе следующим образом. Пусть, например, жидкость входит в трубу из резервуара большого размеры, кромки входного отверстия которого хорошо закруглены.

В этом случае скорости во всех точках входного поперечного сечения будут практически одинаковы, за исключением очень тонкого, так называемого пристенного слоя(слоя вблизи стенок), в котором вследствие прилипания жидкости к стенкам происходит почти внезапное падение скорости до нуля. Поэтому кривая скоростей во входном сечении может быть представлена достаточно точно в виде отрезка прямой.

По мере удаления от входа, вследствие трения у стенок, слои жидкости, соседние с пограничным слоем, начинают затормаживаться, толщина этого слоя постепенно увеличивается, а движение в нем, наоборот, замедляется.

Центральная же часть потока (ядро течения), еще не захваченная трением, продолжает двигаться как одно целое, с примерно одинаковой для всех слоев скоростью, причем замедление движения в пристенном слое неизбежно вызывает увеличение скорости в ядре.

Таким образом, в середине трубы, в ядре, скорость течения все время возрастает, а у стенок, в растущем пограничном слое, уменьшается. Это происходит до тех пор, пока пограничный слой не захватит всего сечения потока и ядро не будет сведено к нулю. На этом формирование потока заканчивается, и кривая скоростей принимает обычную для ламинарного режима параболическую форму.

Переход от ламинарного течения к турбулентному

Ламинарное течения жидкости при некоторых условиях способно перейти в турбулентное. При повышении скорости течения потока слоистая структура потока начинает разрушаться, появляются волны и вихри, распространение которых в потоке говорит о нарастающем возмущении.

Постепенно количество вихрей начинает возрастать, и возрастает пока струйка не разобьется на множество перемешивающихся между собой более мелких струек.

Хаотичное движение таких мелких струек позволяет говорить о начале перехода ламинарного режима течения в турбулентное. С увеличением скорости ламинарное течение теряет свою устойчивость, при этом любые случайные небольшие возмущения, которые раньше вызывали только лишь малые колебания, начинают быстро развиваться.

Видео о ламинарном течении

В бытовом случае переход одного режима течения в другой можно отследить на примере струи дыма. Сначала частицы движутся практически параллельно по неизменяемым во времени траекториям. Дым практически неподвижен. Со временем в некоторых местах вдруг возникают крупные вихри, которые двигаются по хаотичным траекториям. Эти вихри распадаются на более маленькие, те – на еще более мелкие и так далее. В конце концов, дым практически смешивается с окружающим воздухом.

Ссылка на основную публикацию
Adblock
detector