6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор давления газа типа до себя

Все о транспорте газа

Давление газа регулируют с помощью регуляторов давления, которые поддерживают (стабилизируют) рабочее давление на заданном уровне при переменном расходе газа.

Регуляторы давления газа являются важнейшими приборами городских газораспределительных сетей. От их работы зависит бесперебойная подача газа к объектам газопотребления.

В зависимости от назначения и места установки используются различные регуляторы давления, отличающиеся конструктивным исполнением, формой, размерами, пропускной способностью и принципом действия. По принципу действия различают регуляторы прямого и непрямого действия.

У регуляторов прямого действия изменение конечного (рабочего) давления вызывает усилие, необходимое для осуществления регулирующего действия прибора.

У регуляторов непрямого действия изменение конечного (рабочего) давления приводит в действие лишь один из механизмов (командный прибор, регулятор управления), кото¬рый включает источник энергии и осуществляет регулирующие функции.

В зависимости от типа дроссельных устройств регуляторы могут быть одно- и двухседельными, а также с твердыми и мягкими клапанами.

На рис.75 показаны различные виды клапанов дроссельных устройств регуляторов давления: а) жесткий односедельный; б)- мягкий односедельный, выполненный из кожи или газоустойчивой резины; в) полый цилиндр с окнами для прохода газа; г) жесткий двухседельный, неразрезной, с направляющими перьями; д) мягкий двухседельный со свободно насаженными на шток клапанами.

Жесткие клапаны по сравнению с мягкими, хотя и более долговечны в работе, но с течением времени или при засоре не обеспечивают плотного закрытия седла. Клапаны жесткие двухседельные, имеющие двойное сопряжение, не обеспечивают герметичности, поэтому не используются на тупиковых газопроводах.

РЕГУЛЯТОРЫ ДАВЛЕНИЯ ПРЯМОГО ДЕЙСТВИЯ

У регуляторов давления прямого действия регулирующее устройство приводят в движение мембраной, находящейся под воздействием регулируемого давления.

Изменение регулируемого (рабочего) давления вызывает смещение мембраны, а через передаточный механизм и изменение количества прохода газа через регулирующее устройство регуляторов давления.

Таким образом, на изменение рабочего давления регулятор давления реагирует изменением количества пропускаемого газа.

Принцип действия регулятора давления прямого действия показан на рисунке.

Газ с давлением поступает во входной патрубок регулятора, затем проходит через седло клапана 2 и уходит из регулятора через выходной патрубок 3. Регулятор должен поддерживать после себя рабочее давление постоянные в условиях переменного расхода.

При изменении расхода газа будет изменяться рабочее давление которое воздействует снизу на мембрану 4. При увеличении расхода газа давление в первый момент несколько упадет и сила, действующая на мембрану снизу, несколько уменьшится, в результате чего под действием груза 5 мембрана вместе с клапаном 6 сместится на некоторую величину вниз и увеличит проход для газа. Давление поднимется до прежней величины.

При уменьшении расхода газа давление в первый момент несколько увеличится и мембрана будет смещаться вверх, прикрывая проходное сечение для газа клапаном. Уменьшение подачи газа через регулятор вызовет снижение до первоначальной величины.

Таким образом, регулятор давления будет поддерживать рабочее давление на заданном уровне, который определяется величиной нагрузки мембраны.

Учитывая, что разнообразие конструкций регуляторов давления очень велико, будут рассмотрены только те конструкции, которые широко используются при городском газоснабжении.

Регулятор давления РДК. Нормальная работа бытовых газовых приборов в большой степени зависит от постоянства давления газа во внутри домовых газовых сетях.

При газоснабжении бытовых потребителей сжиженным газом применяют регулятор давления типа РДК, используемый при баллонных установках и рассчитанный на начальное давление до 16 кгс/см 2 .

Давление на выходе можно регулировать в пределах 100—300 мм вод. ст. Производительность регулятора при перепаде давления в 1 кгс/см 2 и удельном весе пропанбутановой смеси около 2 кг/м 3 равна 1 м з /ч. На рис. показано устройство регулятора.

Газ высокого давления поступает через входной штуцер под клапан 2 с уплотнением из масло-, бензо- и морозостойкой резины. Положение клапана по отношению к седлу, расположенному на входном штуцере, определяется положением мембраны 3, связанной с клапаном рычажно-шарнирным механизмом.

На мембрану сверху воздействует пружина 4, а снизу давление газа. Сжатие пружины регулируется винтом 5, которым осуществляют настройку регулятора на рабочее дав¬ление. В этом случае газ, проходя через клапан, будет его и поступать через выходное отверстие 6 регулятора к газовым приборам.Если выходное давление будет повышаться сверх заданного, то пружина 4 сожмется, мембрана пойдет вверх и через рычажно-шарнирный механизм 7 подаст клапан вниз и уменьшит проход газа через регулятор. В мембрану регулятора вмонтирован предохранительный клапан 8, который работает следующим образом: при закрытом клапане 2 и повышении давления под мембраной сверх установленного (‘при отсутствии расхода газа и неплотном закрытии клапана) мембрана, преодолевая действие пружины 4 и пружины 9 предохранительного клапана 5, отойдет от уплотнения 10 и сбросит излишек давления газа через отверстие под верхнюю крышку 12 регулятора, которая соединяется выбросной трубкой с атмосферой.

После настройки регулятора на определенное рабочее давление регулировочный винт 5 закрывается колпачком 13 и закрепляется винтом 14, который пломбируется. Абонентам запрещается производить регулировку давления газа винтом 5.

Для создания нормальных условий работы регулятора давления, когда положение клапана находится в области регулирования, расчетная производительность его должна быть примерно на 20% больше требуемой максимальной производительности регулятора. По этой причине регулятор рекомендуется подбирать так, чтобы он был загружен при требуемой производительности не более чем на 80%, а при минимальном расходе не менее чем на 10%.

РЕГУЛЯТОРЫ ДАВЛЕНИЯ НЕПРЯМОГО ДЕЙСТВИЯ

Автоматический регулятор непрямого действия состоит из следующих основных частей: а) задающего устройства, при помощи которого регулятор настраивают на заданную величину давления; б) воспринимающего элемента, который осуществляет перестановку регулирующего устройства; в) измерительного устройства, измеряющего сигнал, полученный от воспринимающего устройства, и сравнивающего его с заданной величиной; г) устройства для усиления сигнала за счет включения вспомогательной энергии; д) исполнительного механизма, перемещающего регулирующий орган (клапан или дроссельную заслонку).

Из автоматических регуляторов давления непрямого действия в газоснабжении получили пневматические регуляторы. Они широко применяются на газораспределительных и газгольдерных станциях, а также на крупных городских и промышленных установках для регулирования давления газа, где не могут быть применены регуляторы давления прямого действия. По этой причине в дальнейшем будут рассмотрены только пневматические регуляторы давления непрямого действия.

Пневматические регуляторы давления. Использование регуляторов давления прямого действия для регулирования высоких давлений газа не представляется возможным из-за тех 1 больших усилий, которые развиваются на мембраннопружинных приводах дрооссельных устройств.

Чтобы сохранить прежние размеры мембран, потребовалось бы их выполнять из более прочных материалов, а это , опять сказалось бы на чувствительности регуляторов и точ¬ности регулирования контролируемого давления.

Для того чтобы не увеличивать прочности мембран и не уменьшать их размеров, применяют пневматические реле, которые уменьшают силы, действующие на рабочие мембраны при использовании регуляторов на высоких давлениях.

Пневматическое реле. Устройство пневматического реле показано на схеме (рис. 85).

Пневматическое реле включается между газопроводом контролируемого давления и рабочей мембраной регулирующего газового клапана.

Назначение реле состоит в том, чтобы снижать высокое

давление и поддерживать это сниженное давление (не выше 1,1 кгс/см 2 ) над рабочей мембраной 9 регулирующего клапана 11 в зависимости от величины регулируемого давления.

На схеме положение частей регулирующего клапана следующее. Газ высокого давления Р1, пройдя газовый кран Л,. фильтр и редуктор, поступает в корпус 8 под золотник реле 7, который находится в закрытом положении.

Давление газа над рабочей мембраной 9 отсутствует, так как оно было сброшено в атмосферу через осевой канал в ниппеле 5, закрепленном на эластичной мембране 6. Под действием пружины 10 газовые клапаны подняты и находятся в открытом положе¬нии. Возможный пропуск газа через золотник 7, за счет недостаточной герметичности закрытия, будет сбрасываться в атмосферу.

При повышении регулируемого давления PS увеличится давление на мембрану реле 1 и она сместится вправо, сжимая пружину 2 и подавая шток 4 с ниппелем 5 к золотнику 7. При достижении давления Рч заданной величины ниппель 5 подойдет своим осевым отверстием к малому конусу золотника 7 и перекроет сброс газа в атмосферу.

Дальнейшее небольшое повышение давления Ру, заставит подвижную систему реле еще сместиться вправо, и тогда ниппель 5 будет открывать золотник 7 и пропускать газ на мембрану 9, которая, прогибаясь вниз, сожмет пружину 10 и несколько закроет двухседельный клапан. Контролируемое давление Рч будет снижаться до заданной величины.

В случае снижения Ps ниже заданной величины, процесс регулирования повторится в обратном порядке.

Настройка пневматического реле на определенное рабочее давление Рч осуществляется величиной сжатия пружины 2 с помощью гайки 3.

Применение пневматического реле позволяет регулировать очень высокие и очень низкие давления газа обычными регулирующими клапанами, обеспечивая при этом большую точность в стабилизации регулируемого давления на заданном уровне.

Пневматическое реле с обратной связью. Реле с обратной связью поаволяет поддерживать заданное давление в контролируемом газопроводе более постоянным и независимым при изменениях расхода газа.

На рис. 86 показано пневматическое реле с обратной связью, у которого между механизмом, воспринимающим контролируемое давление Рч, трубчатой манометрической пружиной и механизмом, регулирующим подачу газа в газопроводе, существуют прямая и обратная связи, вызывающие замедленное перемещение запорно-регулирующих деталей клапана.

В корпусе реле помещается подвижная система, состоящая из двух мембран 2 с подвешенным между ними ниппелем 3, пружины 4, золотника 5 и пружины 6. При работе реле эта подвижная система находится в равновесии под действием сил: водной стороны—давления на мембрану 2 в полости корпуса реле; с другой—действия двух пружин 4 и 6.

При горизонтальном возвратно-поступательном движении этой подвижной системы она принимает три положения, при которых: а)редуцированный и очищенный газ в фильтре 7 и редукторе 5 может поступать в над мембранное пространство привода 9 (см. стрелки), когда система находится в левом положении; б) газ из полости привода 9 может уходить на сброс в атмосферу через отверстие А (система находится в правом положении); в) газ в полости привода запирается (система находится в промежуточном положении).

Допустим, что регулируемое давление Рч по величине ста¬ло несколько меньше заданного. Снижение давления вызовет некоторое сжатие манометрической пружины 1, и она поднимет левый конец заслонки 10. Открывание сопла 11 снизит давление газа на .мембрану 2 в полости, так как поступление газа через калиброванное отверстие в насадке 12 останется прежним, а выход газа через сопло 11 в атмосферу увеличится. Под действием пружины 4 мембрана 2 будет смещаться вправо, и ниппель 3, отойдя от малого конуса золотника 5, откроет проход газу из полости привода 9 в атмосферу (через ниппель, затем между мембранами 2 в отверстие А). Под действием пружины привода 13 регулирующий клапан К откроет проход газа, и давление будет повышаться.

Повышение давления Pi вызывает закрывание сопла 11 увеличение давления в полости N и смещение подвижной системы влево. Когда ниппель сядет на малый конус золотника 5, сброс газа из полости привода 9 в атмосферу прекратится и регулирующий клапан перестанет открываться. Давление увеличится до заданной величины и может несколько ее перейти за счет инерции регулятора. В этом случае подвижная система ‘будет смещаться еще влево, сместит большой конус золотника 5 и увеличит проход в седле 14, в результате чero увеличится проход газа из редуктора 8 в над мембранное пространство 9 и регулирующий клапан закроется.

Регулируемое давление Ps теперь будет падать, а процесс регулирования повторяться с определенной амплитудой колебания давления. Эти колебания могут в значительной степени усиливаться неравномерностью расхода газа в газопроводах. Для уменьшения этих колебаний в пневматическое реле вводится обратная связь, которая вызывает замедление перестановок, а в некоторых случаях даже обратные перестановки дроссельного устройства в регулирующем клапане. Обратная связь осуществляется манометрической пружиной-сильфоном 15, .которая открытым концом соединена с полостью привода 9, а глухим — связана с коромыслом 16, к которому шарнирно присоединен правый конец заслонки 10. Действие на сопло 11 обратной связи сильфона 15 противоположно действию прямой связи от трубчатой манометрической пружины.

Читать еще:  Срок службы утеплителей какой утеплитель предпочесть

Обратная связь способствует более плавной работе регулирующего клапана и выравниванию контролируемого давления.

Степень влияния прямой и обратной связи на процесс регулирования давления устанавливается путем изменения положения сопла 11 по горизонтали под заслонкой 10.

Настройка реле на определенное давление производится с помощью кнопки 17, связанной системой зубчатой передачи с манометрической пружиной и позволяющей изменять ее положение.

В зависимости от упругости трубчатой манометрической пружины 1 регулирующие клапаны этого типа могут работать при давлениях от 3 до 30 кгс/см 2 .

Современные регуляторы высокого давления газа

Бесперебойное и безопасное газоснабжение – приоритетная задача в работе любой газораспределительной организации, и ее успешное решение в первую очередь зависит от качества эксплуатируемого оборудования.
Выход из строя регулятора давления газа на магистральном трубопроводе высокого давления или в ГРС может привести к серьезным аварийным ситуациям, а также и к необратимому выходу из строя технологического оборудования, установленного после регулятора. Не говоря уже о перебоях с подачей газа потребителям.
Причины указанных отказов могут быть разными, но самые распространенные – применение некачественных комплектующих изделий и конструкционных материалов, а также нарушение технологии изготовления и контроля качества изготовленной продукции [1].
Непрерывное техническое совершенствование производимой продукции и более чем 20 летний опыт работы позволили ГК «Стирол-ГАЗ» организовать производство широкой номенклатуры высококачественного оборудования для газовой отрасли, которое отвечает всем современным требованиям, как по точности поддержания давления, так и по безопасности работы в широком диапазоне температур, что позволяет успешно применять оборудование практически во всех климатических зонах РФ.

Особое внимание хотелось бы обратить на регуляторы высокого давления газа типа РДУ (рис.1) и РД- (М) (рис.2).

Рис. 1 Регуляторы давления газа типа
РДУ
Рис. 2 Регуляторы давления газа типа
РД-(М)

В указанных регуляторах применены передовые инновационные решения, современные конструктивные материалы и смазки, обеспечивающие безотказную работу изделий во всем диапазоне рабочих давлений, температур и расходов.

Регуляторы давления газа изготавливаются на самом современном оборудовании с ЧПУ, что позволяет обеспечить высокое качество каждого изделия.
Конструктивно регуляторы давления газа имеют полностью разборный корпус (каждая деталь изготавливаются из поковки), что обеспечивает возможность замены корпусных деталей. При этом отсутствие сварных соединений в корпусных узлах исключает вероятность возникновения дефектов швов, снижающих прочность соединения при переменных нагрузках. Все уплотнения регулятора выполнены по ГОСТ — 9833-73, что обеспечивает стабильное соответствие габаритно-присоединительных размеров регулятора.
Высокая коррозионостойкость и долговечность регулятора обеспечивается тем, что все внутренние полости и наружные поверхности имеют коррозионостойкое гальваническое покрытие. Обвязка импульсного трубопровода выполнена трубками и фитингами из нержавеющей стали, из нее же изготовлены штоки и седла регуляторов. Реализация указанных мероприятий и конструктивных решений обеспечивают средний срок службы регулятора лет не менее 30 лет. Регуляторы типа РДУ и РД-(М) производства ГК «Стирол-ГАЗ» внесены в реестр поставщиков ПАО «Газпром».

Односедельные регуляторы давления газа типа РДУ предназначены для автоматического регулирования давления газа «после себя» на магистральных газопроводах высокого давления (газораспределительных станциях, установках очистки и осушки газа, газовых промыслах, компрессорных станциях и др.) Регуляторы работоспособны при температуре окружающего воздуха от — 40 до + 50 0С и относительной влажностью до 100%.

Регуляторы давления РДУ выпускаются на диаметры условного прохода от 25 до 100 мм и отличаются высокой пропускной способностью:

Исполнениеиаметр условного
прохода DN, мм
Коэффициент пропускной
Способности, Кv, м?/ч
РДУ 80-00
РДУ 80-01
РДУ 80-02
РДУ 80-03
25
50
80
100
16
50
100
200

Регуляторы РДУ изготавливаются по ТУ 421862-009-72546957-2014 в двух исполнениях: на максимальное входное давление 6,4 МПа (64 кгс/см?) и 8,0 МПа (80 кгс/см?).

Для магистральных газопроводов высокого ГК «Стирол-ГАЗ» выпускает также регуляторы давления типа РД-(М).
Принцип действия регулятора основан на компенсации сил, действующих на чувствительный элемент ? мембрану, перемещение которой при изменении выходного давления обеспечивает перемещение клапана регулирующего органа.
Регуляторы предназначены для редуцирования высокого давления газа до заданного среднего и автоматического поддержания выходного давления в заданных пределах независимо от изменений входного давления и расхода.
Регуляторы давления РД-(М) отличаются высокой точностью поддержания выходного давления и устойчивостью к автоколебаниям.

Допустимые колебания выходного давления±5% номинального значения при колебаниях входного давления;
±25%;
±2,5% в диапазоне расходов газа от 10% до 100;

Регуляторы РД-(М) выпускаются по ТУ 421862-010-72546957-2014. Диаметры условного прохода от 25 до 150 мм. Регуляторы предназначены для работы при температуре окружающего воздуха от — 40 до + 50 o С и относительной влажности до 100%.

Одновременное использование нескольких регуляторов РД-(М) позволяет значительно расширить выполняемые задачи. Например, использование двух последовательно установленных регуляторов позволяет снижать давление в две стадии, обеспечивая повышенную точность поддержания выходного давления, а при выходе из строя одного из регуляторов, второй полностью берет на себя функции отказавшего регулятора и продолжает поддерживать выходное давление на заданном уровне.
ГК «Стирол-ГАЗ» и его ведущий дилер ООО «НПФ «РАСКО» рекомендуют регуляторы давления газа типа РДУ и РД-(М) к широкому промышленному внедрению во всех регионах России и стран СНГ, как одно из лучших на данный момент технических решений по совокупности показателей «цена/качество».

Еще одним производителем высококачественных регуляторов давления газа, в том числе, для магистральных трубопроводов в последние годы стало предприятие ООО «ЭЛЬСТЕР Газэлектроника» (г. Арзамас). Являясь многие годы ведущим в России по производству газоизмерительного оборудования, а также по развертыванию и внедрению автоматизированных систем сбора и передачи данных с коммерческих узлов учета природного газа (системы АСД) в промышленном и коммунально-бытовом секторе [2], предприятие, после вхождения в состав международной корпорации Honeywell, значительно расширило номенклатуру поставок газорегуляторного оборудования, обеспечивая комплексные решения для всей цепочки газоснабжения (рис. 3)

Рис. 3. Решения для всей цепочки газоснабжения

Флагманскими моделями регуляторов давления газа производства ООО «ЭЛЬСТЕР Газэлектроника» являются регуляторы серии 300 (для коммунального назначения и не больших промышленных предприятий — модели HON (ранее хорошо известные под аббревиатурой RMG) 330 и HON 370) и серии 500 (для промышленного назначения и газотранспортных систем — модель HON 512). Указанные регуляторы изготавливаются на производственной базе в г. Арзамас Нижегородской области и полностью соответствуют критериям импортозамещения, что особенно важно в нынешней политической ситуации для обеспечения безопасности газовой отрасли. Регуляторы HON 512, предназначенные для редуцирования и поддержания с высокой точностью давления в газопроводах высокого давления (рис. 4) отличаются большим диапазоном технических характеристик и дополнительных функций, благодаря выбору различных типов пилотов, к которым относятся:

  • Возможность дистанционной настройки уставки (при использовании системы автоматизации);
  • Пневмо-регулирование (пилоты серии HON 650);
  • Регулирование выходного давления и перепада давления, например, для защиты счетчиков газа;
  • Электро?пневматическое регулирование для решения сложных задач автоматизации;
  • Высокая пропускная способность благодаря осевой конструкции регулятора;
  • Доступность версий со встроенным шумоглушением, а также с внешним шумопоглощающим патрубком.
Основные технические характеристики регуляторов
давления газа HON 512 пилотного типа:
Входное давление до 100 бар
Диапазон выходного давления 0,3 до 90 бар
Фланцы PN 40, ANSI 300/600
Пропускная способность KG до 55000 м3/ч
Размеры DN 25, 50, 80, 100, 150, 200, 250, 300

ООО «НПФ РАСКО», являясь генеральным дилером ООО «ЭЛЬСТЕР Газэлектроника», обеспечивает поставку всей номенклатуры продукции производства данного предприятия по оптимальным ценам и в минимальные сроки, в том числе за счет постоянного наличия наиболее ликвидной продукции на складе в Москве, а также оказывает весь спектр инжиниринговых услуг по выбору данного оборудования и его вводу в эксплуатацию.

Литература:
1. Золотаревский С.А., Санин А. В., Левандовский В. А. «Российский рынок газорегуляторного оборудования. Текущая ситуация и перспективы развития» // «Трубопроводная арматура и оборудование (ТПА)» №1(64) 2013 г.
2. Санин А.В., начальник отдела газового оборудования ООО «НПФ «РАСКО»; Хильченко П.А., ГИП проекта ПУРДГ, ООО «ЭЛЬСТЕР Газэлектроника» «Импортозамещение в газовой отрасли на примере освоения в России производства регуляторов давления газа серий MR и M2R» // «Трубопроводная арматура и оборудование (ТПА)» №4(79) 2015 г.

Бесперебойное и безопасное газоснабжение – приоритетная задача в работе любой газораспределительной организации, и ее успешное решение в первую очередь зависит от качества эксплуатируемого оборудования.

Регулятор давления «до себя»

ОписаниеРегулятор давления прямого действия «до себя»
Диаметр15 — 100 мм
Давление16 бар
Температурадо 150°С

ОписаниеРегулятор давления прямого действия «до себя»
RC-5 (сервопривод мембранный блок);
RC-5М (сервопривод с сильфоном);
RC-5Т (сервопривод с поршнем)
Диаметр15 — 250 мм
Давление16 — 40 бар
Температурадо 300°С

ОписаниеРегулятор давления прямого действия «до себя»
RC-5-2 (сервопривод мембранный блок);
RC-5-2Т (сервопривод с поршнем);
RC-5-2М (сервопривод с сильфоном)
Диаметр15 — 250 мм
Давление40 бар
Температурадо 130°С

Компания «НЕМЕН» предлагает приобрести регуляторы давления «до себя» различных типоразмеров. У нас Вы можете купить оборудование с пропускной способностью (Kvs) от 3,2 до 400 м³/ч.

Назначение

Регулятор «до себя» — это вид запорной арматуры, предназначенный для изменения параметров рабочей среды в контуре системы или заданном диапазоне на определенном ее участке, расположенном до клапана, путем увеличения или уменьшения величины проходного сечения. Регулятор управляется непосредственно от рабочей среды.

Конструкция регулятора

Клапан. Состоит из:

— корпуса, изготовленного из:

  • стали марки GP240GH,
  • серого чугуна ,
  • сфероидального чугуна EN-;

— тарелки и седла из нержавеющей стали , X6CrNiMoTi и уплотнения из металла или полимеров (PTFE, EPDM, NBR).

Сервопривод. Состоит из корпуса, изготовленного из нержавеющей кислотостойкой стали , и мембраны. Корпус мембраны изготовлен из стали С22, уплотнитель — из армированного полимера EPDM или других материалов в зависимости от рабочей среды.

Агрегат задатчиков. Состоит из стальных пружин и элементов задатчика, изготовленных из углеродистой стали.

Виды регуляторов

Прямого действия. Регулирующий орган перемещается при использовании энергии, которой обладает регулируемый поток рабочей среды. Регуляторы давления прямого действия — дроссельные устройства, которые приводит в действие мембрана, находящаяся под регулируемым давлением. Любые изменения давления среды вызывают смещение мембраны, благодаря чему меняется проходное сечение дроссельного устройства. Ввиду этого уменьшается или увеличивается количество среды, пропускаемой регулятором.

Непрямого действия. Регулирующий орган перемещается под воздействием энергии от стороннего источника. Регуляторы этого типа оснащаются вспомогательным устройством — командным прибором. Уравновешивание усилий от давления среды на мембрану осуществляется при помощи давления, устанавливаемого командным прибором. В таких устройствах имеется усилитель, который воспринимает и усиливает измерительный импульс.

Схема подключения

Регулятор давления монтируется на горизонтальных участках системы. Направление потока рабочей среды должно соответствовать показанию стрелки на корпусе прибора. Если температура среды в трубопроводе не превышает 100 °С, то положение регулятора выбирается произвольно. При температуре среды свыше 100 °С устройство монтируется приводом вниз. Для обеспечения стабильной работы запорной арматуры перед регулятором устанавливается сеточный фильтр, а в точке отбора импульса монтируется сальниковый клапан ZWD.

Читать еще:  Обзор конденсационных котлов на газу

Оборудование с указанным параметрам не найдено!

Газовые регуляторы давления: виды, устройство, принцип работы

Газовая трубопроводная инфраструктура включает в себя широкий набор регулирующих устройств. Большинство из них ориентируется на обеспечение безопасной работы системы и возможность контроля отдельных эксплуатационных параметров. Одним из важнейших устройств данного типа является регулятор газового давления, работающий в автоматическом режиме.

Принцип действия устройства

Рабочий процесс осуществляется за счет функций двух частей газовой арматуры – исполняющей механики и непосредственно регулятора. Первая часть выступает в качестве чувствительного элемента, благодаря которому такие устройства в принципе могут считаться автоматическими. Исполнительные органы газового регулятора давления в постоянном режиме сравнивают текущие показатели обслуживаемой среды и нормативные эксплуатационные значения, которые были изначально заложены оператором на конкретный рабочий сеанс. Далее при обнаружении расхождения в показателях этот же механизм генерирует сигнал для регулирующей системы, которая корректирует величину давления, понижая или повышая ее. Причем способ влияния на рабочие показатели может быть разным – это зависит от энергетической среды питания. Например, может использоваться потенциал того же газа или заряд от внешнего источника – гидравлического, теплового, электрического и т. д.

Существуют и модели, в которых реализуется прямой принцип регуляции. То есть чувствительный или исполнительный механизм отвечает и за сравнение целевых показателей системы, и за их коррекцию. К таким устройствам, в частности, относятся пружинные газовые регуляторы давления. Принцип работы такой арматуры заключается в управлении диафрагмой, механически воздействующей на состояние обслуживаемой системы. Обычно такие модели применяются в газораспределительных сетях, которые требуют быстрого и прямого механизма контроля.

Конструкция арматуры

К основным элементам регуляторов этого типа относятся затворы, которые применяются в разных видах. Например, данная арматура может быть клапанной, диафрагменной, шланговой и дисковой. Существуют в некотором роде комбинированные регуляторы газового давления, в конструкции которых используются седельные и клапанные затворы. К преимуществам таких устройств специалисты относят высокую герметичность системы уплотнения. Для трубопроводов с высокой пропускной способностью используют двухседельные затворы, у которых площадь проходного сечения больше, чем у других регуляторов. На крупных станциях также получили распространение заслоночные затворы. Они срабатывают в два этапа и требуют использования внешних источников энергии, но зато отличаются надежностью при контроле больших объемов газового расхода.

В качестве чувствительного органа применяют мембраны. Некоторые системы предполагают их использование и как приводных устройств. Сама мембрана может быть гофрированной или плоской, но в обоих случаях жесткость и способность выдерживать различные нагрузки варьируется в широких диапазонах.

В соответствии с техническими нормативами, устройство газовых регуляторов давления с запорными и контролирующими элементами должно соответствовать следующим требованиям:

  • Нечувствительная зона работы в своем значении не должна превышать 2,5% относительно уровня максимального выходного давления.
  • Зона пропорциональности в случае с баллонными и комбинированными регуляторами также не должна быть выше 20% относительно верхнего предела давления на выходе.
  • В условиях резких перепадов давления в контуре время технического перехода регулирования не должно быть выше 1 мин.

Разновидности технического исполнения

Регуляторы для газовых сред классифицируются по нескольким технико-конструкционным признакам. В частности, разделение касается количества ступеней редуцирования (понижения), сложности механического исполнения и способа забора импульса выходного давления.

Что касается первого признака, то существуют одно- и двухступенчатые модели, которые отличаются по расходным характеристикам. К примеру, газовый регулятор давления для дома с показателем расхода не более 25 м 3 /ч с большей вероятностью будет иметь две ступени редуцирования. Данная схема работы отличается более высокой стабильностью контроля и многоуровневой безопасностью, реализуемой за счет вспомогательных компонентов. В системах с повышенным расходом газа чаще используют одноступенчатые устройства.

В плане сложности конструкции выделяют простые и комбинированные регуляторы, которые можно разделить и по набору функций. В первом случае выполняется только задача понижения давления, а во втором – предусматриваются также возможности для шумоподавления в трубопроводе, предохранения клапана и фильтрации. По системе импульсного забора можно разделить газовые регуляторы давления с непосредственным контролем показателей на выходе, и устройства с внешним подключением чувствительных элементов. Главная проблема использования второго принципа забора заключается в обязательном соблюдении условия поддержания стабильности потока на исследуемом контуре, иначе данные будут некорректными.

Бытовые и коммерческие регуляторы давления в газопроводах

Конструкционное, функциональное и эргономическое исполнение запорной арматуры в итоге сводится к требованиям конкретной сферы применения. Акцент делается на непосредственных рабочих параметрах, среди которых выходное давление, диапазоны замеров, объемы расхода и др. Так, газовые регуляторы давления для бытовых сетей, как правило, характеризуются низкой пропускной способностью и скромным спектром возможностей для настройки. С другой стороны, в такой арматуре делается ориентировка на безопасность и удобство эксплуатации. На практике бытовые регуляторы используются в системах газоснабжения котлов, плит, горелок и прочей домашней техники.

Промышленное и коммерческое применение накладывает более высокие требования на средства контроля газовых сред. Устройства этого типа отличаются расширенными диапазонами показателей выходного и входного давлений, точностью настроек, более высокой пропускной способностью и наличием дополнительных функций. Подобные модели используются газовыми службами, контролирующими снабжение объектов социального назначения, общепита, промышленности, инженерного хозяйства и т. д. Уже отмечалось, что существуют разные регуляторы с точки зрения сложности конструкционного исполнения. Но это не значит, что в промышленном секторе, например, применяются только лишь многофункциональные комбинированные устройства. Простейшие средства управления могут быть полезными на предприятиях благодаря высокой надежности и ремонтопригодности.

Газовый редуктор с регулятором давления

Редуктор представляет собой автономное устройство, предназначенное для контроля давления газовой смеси на выходе из какой-либо емкости или трубопровода. Основная классификация в данном случае предполагает разделение регулирующих узлов по принципу действия. В частности, различаются обратные и прямые устройства. Редуктор с обратным действием работает на понижение давления по мере выхода газа. Конструкция таких устройств включает клапаны, камеры для буферного содержания смеси, регулировочный винт и фурнитурные приспособления. Прямое действие означает, что регулятор будет работать на повышение давления при выпуске газа.

Также различают модели редукторов по типу обслуживаемого газа, количеству ступеней редуцирования и месту использования. Например, существуют регуляторы давления газа для баллонов, трубопроводных сетей и рамп (горелок). В случае с баллонами тип газа определит и способ подключения устройства. Практически все модели редукторов, кроме ацетиленовых, соединяются с баллонами посредством накидных гаек. Устройства, работающие с ацетиленом, обычно фиксируются к емкости хомутами с упорным винтом. Предусматриваются и внешние отличия между редукторами – это может быть маркировка по цвету и указанием информации о рабочей смеси.

Статические и астатические регуляторы

В статических системах характер регуляции нестабилен в местах прямого механического сопряжения с рабочей средой и запорной арматурой. В целях повышения устойчивости такого регулятора вводится дополнительная обратная связь, выравнивающая значения давления. Причем надо отметить, что фактическая величина давления в данном случае будет отличаться от нормативной до момента, пока не восстановится номинальная нагрузка на чувствительный элемент.

Традиционное исполнение статического регулятора давления газа предусматривает наличие собственного стабилизирующего устройства в виде пружины – для сравнения, в других версиях используется компенсирующий груз. В процессе рабочего момента сила, которую развивает пружина, должна соответствовать степени ее же деформации. Наибольшая степень сжатия обретается в ситуациях, когда мембрана полностью закрывает регулирующий канал.

Астатические регуляторы при любых нагрузках самостоятельно приводят показатель давления к нужной величине. Также восстанавливается и положение органа регуляции. Впрочем, у исполнительной механики, как правило, не бывает четкой позиции – в разные моменты регуляции он может находиться в любой позиции. Астатические регулирующие устройства чаще используют в сетях с высокой способностью к самовыравниванию рабочих показателей.

Изодромный регулятор газа

Если статическую систему контроля давления можно охарактеризовать как модель с жесткой обратной связью, то изодромные устройства взаимодействуют с упругими элементами восстановления характеристик. Изначально в момент фиксации отклонения от заданной величины регулятор займет позицию, которая соответствует значению, пропорциональному показателю отхождения от нормы. Если же давление не нормализуется, газовая арматура будет смещаться в сторону компенсации до тех пор, пока показатели не придут в норму.

С точки зрения характера эксплуатации изодромный регулятор можно назвать средним устройством между астатическими и статическими моделями. Но в любом случае отмечается высокая степень независимости данной регулирующей механики. Существует и разновидность изодромной арматуры с предварением. Данное устройство отличается тем, что скорость смещения исполнительного органа изначально превышает темпы изменения давления. То есть техника работает на опережение, экономя время на восстановление параметра. В то же время регуляторы с предварением затрачивают больше энергии от внешнего источника.

Теперь можно перейти к рассмотрению конкретных моделей газовых регуляторов давления. Обзор лучших представителей сегмента представлен ниже.

Производители регуляторов

Устройства для управления и контроля потоками газовых смесей в России широко представляют как отечественные, так и зарубежные изготовители. В частности, завод «Газаппарат» предлагает высокоточные регуляторы серии РДНК, которые стабильно поддерживают рабочие показатели в системе независимо от активности потребления газа. Еще один производитель качественных устройств для регуляции давления в газопроводах – предприятие «Метран», которое занимается разработкой контрольно-измерительных систем совместно с крупной зарубежной компанией Emerson. Данная продукция используется в промышленности и в бытовой сфере. Например, газовые службы задействуют в управляемых хозяйствах системы серии 1098-EGR, которые отличаются быстрым откликом, точностью настроек параметров и высокой производительностью. Базовые модификации вполне годятся для линий подачи газового топлива к сетевым и локальным точкам забора. Комплексно подходит к задачам контроля топливно-газового расхода предприятие «ГасТех». Специалисты предприятия разрабатывают индивидуальные решения для обслуживания газовых установок разного типа независимо от их сопряженности с другим оборудованием.

Эксплуатация регулятора

На корпусе устройства предусматривается несколько соединительных отверстий разного диаметра. Конфигурацию системы подключения следует подбирать исходя из конкретных условий эксплуатации. Наиболее распространенными считаются форматы каналов в диапазоне размеров от 0,25 до 1 дюйма. К таким соединениям подходят основные фитинги и переходники, подключаемые посредством вращающихся шайб.

Убедившись в возможностях введения регулятора в конкретную систему, можно приступать к непосредственной установке. Она выполняется по следующей инструкции:

  • Включить клапан в рабочие контуры, проверив наличие газа. Закрыть клапан полностью и убрать заглушку для защиты отсекающего клапана при наличии такового.
  • Плавно оттянуть рукоятку взвода. Ход должен быть небольшим – порядка 10 мм.
  • Взвести вторую ступень, но постепенно, чтобы не было скачкообразной подачи газа. Если есть возможность, можно оставить небольшую утечку через отсекающий клапан.
  • Заглушка отсекающего клапана ставится обратно.
  • Медленно закрыть выходной клапан, предварительно устранив технологические утечки.

В процессе установки можно выполнить базовые настройки газового регулятора давления по нескольким параметрам: подаче, положению отсекателя, максимальной величине давления и т. д. Как правило, конкретные значения берутся или из проектных данных, или из паспорта производителя устройства. Рекомендуется производить настройки с отклонениями не более 10% от установленных в документации. Для управления рабочим давлением используют торцовочный ключ. Поворачивая им наконечник заглушки, можно повышать или понижать указанную величину.

Читать еще:  Чем утеплить столбчатый фундамент

Заключение

Применение контрольно-управляющей и, в частности, регулирующей арматуры при эксплуатации газового оборудования является крайне важной мерой не только с точки зрения выполнения технологических задач, но и как условие обеспечения безопасности. На крупных предприятиях, станциях и комплексах с гидравлическим режимом обслуживания газораспределительных сетей регулирующие устройства устанавливаются на нескольких точках, автоматически контролируя процессы передвижения рабочих смесей.

В чем же заключается необходимость использования газовой арматуры на практике? Понижение и повышение давления влияет на состояние оборудования и трубопроводных сетей, что особенно важно с учетом взрывоопасности газовых сред как таковых. Также регуляция требуется как условие для соблюдения установленных объемов распределения смесей по разным каналам внутри одной системы. Управление в этом смысле означает контроль интенсивности перемещения газа в соответствии с заданными потребностями и условиями эксплуатации.

Конечно, не только для нужд промышленности используются регуляторы давления в оборудовании, обслуживающем газовые смеси. И компактные горелки, и котлы с бойлерами на данном виде топлива также требуют подключения средств контроля. Другое дело, что встречаются разные схемы и конфигурации управления потоками газа. Поэтому существует множество разновидностей редукторов и регуляторов, конструкции которых ориентированы на потребности того или иного пользователя.

Назначение и особенности выбора регулятор давления «после себя»

Срок службы и соблюдение правил его эксплуатации зависят не только от правильной его установки, но и от качества напора воды в трубах. Резкие скачки, перепады давления и гидроудары часто становятся причиной поломки дорогостоящего оборудования. По этой же причине случаются протечки, ведущие к существенным финансовым затратам. Уберечь себя от подобных неприятностей можно, если установить на систему водоснабжения регулятор давления после себя.

Клапан давления воды: способ установки

Основное назначение, которым обладает клапан давления воды, заключается в обеспечении стабильного давления воды внутри инженерных коммуникаций, в независимости от их типа. В зависимости места установки различают регулятор давления «после себя» и «до себя». Первый регулирует давление воды при ее выходе через устройство, а второй – на входе.

Клапан водяной: конструктивные особенности

Регулирующие клапаны воды могут быть: проточными, мембранными, поршневыми, автоматическими и электронными. Наиболее простую конструкцию имеют проточные клапаны. Поршневые не так надежны из-за вероятности образования коррозии, связанной с примесями, содержащимися в воде.
При использовании мембранного регулятора можно быть уверенным в его долговечной и корректной работе. Устройство такого регулятора основано на наличии двух камер и диафрагмы между ними. Очистка такого регулятора производится гораздо реже, чем других разновидностей.

Какие вопрос решают регулирующие клапаны воды

применяются для решения следующих вопросов при организации системы водоснабжения:

  • За счет стабилизации давления внутри водопроводной магистрали обеспечивается соблюдение требований относительно оптимальных допустимых параметров.
  • Вероятность возникновения гидроудара в системе, приводящего к протечкам и выходу из строя оборудования, сводится к нулю.
  • За счет стабилизации давления воды устройства, корректность работы которых напрямую связана с показателями давления жидкости на входе, работают в штатном режиме.
  • За счет установки клапана регулировки давления воды, обеспечивается ее экономичный расход.
  • При возникновении протечки клапан автоматически закрывается и вода не так быстро поступает в помещение.
  • Исчезает дискомфортный шум, который сопровождает открытие крана при высоком давлении и повышенном напоре воды.

Как работает мембранный регулятор давления «после себя»

  • Входного и выходного отверстия клапана.
  • Патрубка, ведущего к камере с мембраной.
  • Камеры с мембраной.
  • Пружины.
  • Запирающего диска.

Принцип действия такого регулятора состоит в том, что при повышении водяного давления и заполнения камеры с мембраной срабатывает шток, который соединен с запирающим диском. Мембрана давит на него, и диск блокирует поступление воды (полностью или частично).
При стабилизации давления внутри камеры, запорный диск открывает отверстие. Регулятор срабатывает и при понижении давления в системе. В этом случае происходит возвращение жидкости в клапан через патрубок из мембранной камеры. За счет уменьшения давления в камере происходит открытие запирающего диска и увеличение напора воды с повышением ее давления до оптимального значения.
Основное преимущество такого устройства заключается в его надежности и простой эксплуатации.

Особенности и преимущества клапанов марки «bermad»

Регулирующий клапан марки «bermad» обладает следующими достоинствами:

  • При изготовлении устройства учитываются действующие международные стандарты.
  • Устройство изготавливается на основе уникальной запатентованной технологии.
  • Для изготовления устройства применяются современные, технологичные материалы из металла и композитов.
  • Устройство универсально и работает в одинаковом режиме независимо от качества и состава пропускаемой жидкости.
  • Компанией разработаны специализированные и многоцелевые устройства, которые применяются в зависимости от назначения и эксплуатационных условий.

Регулятор давления газа типа до себя

Регуляторы давления газа 149-BV предназначены для редуцирования и поддержания заданного давления природного газа, пропан-бутана, азота и других не агрессивных газов.

Регуляторы применяются на газораспределительных станциях, в узлах редуцирования газорегуляторных установок и т.п.

Регуляторы обеспечивают снижение высокого давления газа, автоматическое поддержание заданного давления на выходе независимо от изменения расхода газа и входного давления и автоматическое отключение подачи газа при аварийных повышении или понижении выходного давления сверх допустимых заданных значений.

Регуляторы давления газа РД-100 предназначены для редуцирования газа высокого давления на газораспределительных станциях.

Регуляторы обеспечивают снижение высокого давления газа, автоматическое поддержание заданного давления на выходе независимо от изменения расхода газа и входного давления и автоматическое отключение подачи газа при аварийных повышении или понижении выходного давления сверх допустимых заданных значений.

Регуляторы отличаются качественной работой в диапазоне малых расходов газа.

Регуляторы эксплуатируются на открытом воздухе в районах с умеренным климатом в условиях, нормированных для исполнения УХЛ, категории I по ГОСТ 15150, но при температуре окружающего воздуха от минус 40ºС с относительной влажностью до 95% при температуре плюс 35ºС, при воздействии атмосферных осадков /снег, дождь/. Температура газа от минус 40 до плюс 70ºС.

Регуляторы давления газа РДУ-80 предназначены для редуцирования газа высокого давления на газораспределительных станциях. Регуляторы обеспечивают снижение высокого давления газа и автоматическое поддержание заданного давления на выходе независимо от изменения расхода газа и входного давления.

Регуляторы эксплуатируются на открытом воздухе в районах с умеренным климатом в условиях, нормированных для исполнения У, категории I по ГОСТ 15150, но при температуре окружающего воздуха от минус 40ºС с относительной влажностью до 95% при температуре плюс 35ºС, при воздействии атмосферных осадков /снег, дождь/. Температура газа от минус 40 до плюс 70ºС.

Регуляторы давления газа РД-16 представляют единую конструкцию с клапаном регулирующим, устройством задания давления (пилотом), регулятором перепада для снижения высокого входного давления до давления питания и предохранительно-запорным клапаном (ПЗК), встроенным в регулятор.

Регуляторы эксплуатируются в районах с умеренным и холодным климатом в условиях, нормированных для исполнения УХЛ, категории 2 по ГОСТ 15150, но при температуре окружающего воздуха от минус 40 до плюс 60°С. Температура газа от минус 40 до плюс 70°С.

Регуляторы давления газа РДГ-150/200 представляют единую конструкцию с клапаном регулирующим, устройством задания давления (пилотом), регулятором перепада (предпилотом) для поддержания постоянного давления на входе в пилот и предохранительно-запорным клапаном (КПЗ), встроенным в регулятор.

Регуляторы эксплуатируются на открытом воздухе в районах с умеренным и холодным климатом в условиях, нормированных для исполнения УХЛ, категории 2 по ГОСТ 15150, но при температуре окружающего воздуха от минус 40 до плюс 60ºС. Температура газа от минус 40 до плюс 70ºС.

Регуляторы давления газа РДГ со встроенным предохранительно-запорным клапаном предназначены для редуцирования высокого или среднего давления, автоматического поддержания выходного давления на заданном уровне, автоматического отключения подачи газа при аварийном повышении и понижении выходного давления сверх допустимых заданных значений.

Регуляторы устанавливаются в ГРП и ГРУ систем газоснабжения промышленных и коммунально-бытовых объектов.

Условия эксплуатации регуляторов должны соответствовать климатическому исполнению УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60°С.

Регуляторы выпускаются с низким РДГ-Н и высоким РДГ-В выходным давлением.

Стандартно регулятор изготавливается с выходом газа справа-налево с регулятором управления, расположенным слева по ходу газа.

Регуляторы давления газа типа РДБК1 предназначены для установки в газорегуляторных пунктах (ГРП) систем газоснабжения городских и сельских населенных пунктов, в ГРП и газорегуляторных установках ГРУ промышленных и коммунально-бытовых предприятий.

Регуляторы обеспечивают снижение входного давления газа, а также автоматическое поддержание заданного давления на выходе независимо от изменения расхода газа и входного давления.

Условия эксплуатации регуляторов должны соответствовать климатическому исполнению УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60°С.

Регуляторы выпускаются с низким РДБК1-Н и высоким РДБК1-В выходным давлением.

Стандартно регулятор изготавливается с выходом газа справа-налево с импульсной колонкой, расположенной слева по ходу газа.

Регуляторы давления газа РДСК-50/400 (РДСК-50/400Б, РДСК-50/400М) предназначены для редуцирования высокого давления на среднее, автоматического поддержания среднего выходного давления на заданном уровне, автоматического отключения подачи газа при аварийных повышении и понижении выходного давления сверх допустимых заданных значений.

Регуляторы изготавливаются в климатическом исполнении УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60°С.

Монтаж регулятора производится на горизонтальном участке газопровода в вертикальном положении.

Регуляторы давления газа комбинированные РДНК-50/400, РДНК-50/1000 предназначены для редуцирования высокого и среднего давления на низкое, автоматического поддержания выходного давления на заданном уровне независимо от изменений расхода и входного давления, автоматического отключения подачи газа при аварийном повышении или понижении выходного давления сверх заданных значений.

Условия эксплуатации регуляторов должны соответствовать климатическому исполнению УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60°С.

Регуляторы давления газа универсальные РДУ-32/С предназначены для редуцирования высокого и среднего давления на низкое, автоматического поддержания выходного давления на заданном уровне независимо от изменений расхода и входного давления, автоматического отключения подачи газа при повышении или понижении выходного давления сверх установленного предела.

Условия эксплуатации регулятора должны соответствовать климатическому исполнению УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60°С.

Регулятор давления газа универсальный РДУ-32/Ж предназначены для редуцирования давления паровой фазы сжиженного газа на низкое, автоматического поддержания выходного давления на заданном уровне независимо от изменений расхода и входного давления, автоматического отключения подачи газа при повышении выходного давления сверх установленного предела или при уменьшении входного давления ниже определенной величины.

Условия эксплуатации регулятора должны соответствовать климатическому исполнению УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60° С.

Регуляторы давления РД-32М предназначены для снижения давления неагрессивных газов и автоматического поддержания выходного давления в заданных пределах на газорегуляторных пунктах (ГРП) и газорегуляторных установках (ГРУ).

Условия эксплуатации регулятора должны соответствовать климатическому исполнению УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60° С .

Регуляторы давления газа РДГД-20М предназначены для систем газоснабжения бытовых и промышленных потребителей. Они обеспечивают редуцирование высокого и среднего давления на низкое, автоматическое поддержание выходного давления на заданном уровне, автоматическое отключение подачи газа при аварийных повышении и понижении выходного давления сверх допустимых заданных значений.

Регуляторы изготавливаются в климатическом исполнении УХЛ2 ГОСТ 15150-69 с температурой окружающего воздуха от минус 40 до плюс 60°С.

Ссылка на основную публикацию
Adblock
detector