0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Идеальный дом расчет теплопотерь дома

Как рассчитать теплопотери дома

Помещения, в которых постоянно или временно находятся люди, должны сохранять определенную температуру соответственно санитарным нормам. Однако согласно законам физики, если за пределами здания температура отличается от той, что внутри помещений, система будет стремиться к равновесию, и помещение потеряет часть своего тепла. Иными словами, произойдут теплопотери, которые необходимо компенсировать за счет системы отопления. Давайте разберем, что это такое и какие расчеты нужно сделать, чтобы подобрать систему отопления.

Что такое теплопотери? Почему их нужно знать?

Теплопотери – это то количество тепла, которое теряют внутренние помещения через ограждающие перегородки, если температура за окном ниже той, которая должна поддерживаться внутри здания.

Необходимость расчета теплопотерь обусловлена задачей проектирования системы отопления, кондиционирования. От данного показателя зависит выбор климатической системы, мощности котельной, сечения труб, количества секций радиатора, применения системы теплый пол, других отопительных устройств.

Усредненные показатели имеет смысл использовать лишь тогда, когда к помещению не предъявляется строгих требований по поддержанию определенных постоянных температур. Остальные случаи, особенно когда речь идет о жилых, общественных строениях с постоянным пребыванием людей без верхней одежды, требуют произвести точный расчет показателя теплопотерь.

На сегодняшний день человечество озадачено проблемой рационального потребления ресурсов, особенно энергетических. Правильный расчет теплопотерь позволит определить наиболее рациональный путь организации системы отопления, чтобы помещение прогревалось до комфортной температуры, при этом энергопотребление не было избыточным.

Расчет потерь тепла

Для точного расчета теплопотерь потребуется подготовить исходные данные по конкретному объекту (объем, высота здания, его местоположение), а также нормативные документы, содержащие таблицы различных коэффициентов, показателей. Сначала рекомендуется рассчитать все составляющие формулы, записать данные, затем подставить данные формулы.

Основные формулы

Для расчета используется следующая формула:

  • а – поправочный коэффициент, который учитывает разницу между температурой воздуха снаружи (улица) определенной местности и температурой -30 о С, для которой обозначена характеристика qот;
  • V – объем здания по внешнему периметру;
  • qот — удельная характеристика отапливаемого помещения, которая обозначена при температуре снаружи -30 о С;
  • tв –температура воздуха внутри помещения;
  • tнр –температура снаружи конкретного местоположения (местности), в котором расположено здание;
  • Кир –коэффициент инфильтрации, определяемый тепловым, ветровым напором.

Из приведенных выше составляющих формулы к числу исходных данных относится объем помещения, поправочный коэффициент, удельную характеристику здания, расчетные температуры необходимо взять из документации, а коэффициент инфильтрации рассчитать по формуле:

g – ускорение свободного падения земли (9,8 м/с 2 );

L – высота строения;

wp — обусловленная данным регионом скорость ветра отопительного периода.

Необходимая документация

Часть данных необходимо взять в нормативной документации, рекомендуется скачать эти документы или найти их онлайн:

Методика определения количества тепловой энергии и теплоносителя […](1);

Общие санитарно-гигиенические требования к воздуху рабочей зоны (2);

Здания жилые и общественные. Параметры микроклимата в помещениях (3);

Строительная климатология (4).

Для удобства литература пронумерована. Далее соответствующая документация будет обозначаться сокращенно (например, Д3).

Исходные данные. Предварительные подсчеты

Рассмотрим расчет теплопотерь на примере административного здания города Омск. Высота здания – 9 метров. Объем здания по внешнему периметру – 8560 кубических метров.

В Таблице 3.1 – Климатические параметры холодного периода года (Д4) напротив соответствующего города находим 5-ую графу, температуру воздуха наиболее холодной пятидневки. Для Омска данный показатель равен – 37 о С.

В 20-й графе этой же таблицы находим скорость ветра данного города. Данный показатель составляет 2,8 м/с.

В пункте 1.2 (Д1) находим Таблицу 2, поправочный коэффициент а для жилых помещений. В таблице представлены коэффициенты температуры шагом 5 градусов, соответственно есть данные температуры — 35 о С (коэффициент 0,95), — 40 о С (коэффициент 0,9). Рассчитываем методом интерполяции коэффициент нашей температуры — 37 о С, получаем – 0,93.

Далее п.3 (Д3) находим Классификацию помещений и определяем категорию анализируемого помещения. Поскольку речь идет об административном здании, ему присваивается категория 3в (пространство пребывания большого количества людей без верхней одежды в положении стоя).

Таблица 3 (Д3) Допустимые, достаточные значения увлажненности воздуха, силы ветра, температурного режима гражданских помещений – находим показатель Температура (оптимальная) для нашего типа здания (3в). Показатель составляет 18-20 градусов. Выбираем наименьшую границу 18 о С.

Таблице 4 (Д1) Удельный показатель тепла культурно-образовательных, административных, лечебных зданий – находим соответствующий коэффициент, исходя из объема здания. Данный случай до 10 000 м 3 . Коэффициент составляет 0,38.

Все данные подготовлены:

Кир – необходимо рассчитать.

Далее можно просто подставить цифры формулы.

Итоговый расчет

Сначала рассчитываем коэффициент инфильтрации:

Кир = 10 -2 √[2*9,8*9(1 — —————) + 2,8 2 ] = 0,4

Qот = 0,93*8560*0,38*(18 – (-37))*(1 + 0,4)*10 -6 Гкал/час = 232933 *10 -6 Гкал/час = 0,232933 Гкал/час

Для большего понимания, посмотрите данное видео:

Укрупненный расчет

Выше описана методика точного подсчета теплопотерь, однако далеко не все используют данную формулу, зачастую обыватели довольствуются усредненными данными, уже посчитанными для помещения высотой потолков до 3 метров. Укрупненный расчет производят исходя из значения 100 Вт/1 квадратный метр помещения. Соответственно дома площадью 100 м 2 необходимо обеспечить отопительную систему мощностью примерно 10 000 Вт.

Подобные расчеты являются достаточно усредненными. Учитывая, что в нашей стране большая вариативность климатических зон, использовать такой расчет нецелесообразно. При недостаточной мощности, дом не будет достаточно хорошо прогреваться, а при избыточной — ресурсы будут расходоваться впустую.

Большие теплопотери дома? Как их снизить?

Зачастую владельцам частного жилья приходится сталкиваться с проблемой повышенных теплопотерь. Несмотря на то, что все расчеты были произведены соответственно нормативной документации, тепла коттеджа всегда не хватает. Это может быть связано с огрехами, допущенными при строительстве дома, установке стеклопакетов, системы кондиционирования, утепления стен.

Чаще всего причиной утечки тепла коттеджа может стать:

  • поврежденный во время монтажа или неправильно закрепленный утеплитель;
  • неэффективная работа радиаторов (радиаторы слишком близко расположены к стене, нагревают ограждающую перегородку);
  • проникновение холода через монтажные отверстия кондиционера или люки;
  • некачественно заделанные кладочные швы;
  • близкая укладка теплых полов к стене;
  • некачественный монтаж стеклопакетов.

Выявить подобные дефекты можно посредством термограммы. Термограмма показывает, какие участки ограждающей перегородки нагреваются сильнее, соответственно отдают больше тепла в окружающую среду.

Чтобы избежать подобных проблем, важно позаботиться о качестве монтажных работ, утепления коттеджа этапа строительства дома. Выбор материалов утепления, стеклопакетов, систем кондиционирования, радиаторов, систем теплых полов также определяет дальнейший уровень теплопотерь. Экономия строительных материалов может впоследствии стать причиной переплат на энергоресурсы.

Сокращению теплопотерь может способствовать правильно составленный архитектурный проект дома. Считается, что отапливать одноэтажный дом простой геометрии, ограниченным количеством углов — экономичнее. Также способствует экономии наличие рольставней окон, остекление южной стороны.

Правильный расчет теплопотерь дома

Автономные системы отопления характеризуются популярностью и неоспоримыми преимуществами. Но они ставят перед домовладельцами, решившимися на коренную перестройку своего дома или квартиры, сложную задачу — необходимость проведения множества специальных расчетов. Ведь чтобы новая инженерная сеть справилась с поставленными задачами, она должна быть правильно спроектирована. А в основе проекта лежат расчеты мощности отопительного агрегата, количества радиаторов, метража труб и других элементов системы. Не меньшее значение имеет и правильный расчет теплопотерь. Онлайновый калькулятор теплопотерь — самый простой способ получить необходимые цифры. Однако рассчитать количество тепла, уходящего из здания, можно и самостоятельно с помощью специальных формул и методик.

Просто о сложном — расчет по удельным характеристикам

Расчет теплопотерь легко может превратиться в настоящую головную боль. На практике рассчитать показатели можно по удельным характеристикам здания. Самое главное — помнить, что расчет ведется не по площади, а по объему здания. Также необходимо учитывать его назначение и этажность. Тепло уходит из дома через строительные ограждающие конструкции.

«Воротами», через которые теплый воздух покидает здание, являются окна, двери, стены, пол, кровля. Кроме этого, влияние оказывает дельта температур — разница между температурой воздуха внутри и снаружи дома. Нельзя сбрасывать со счетов и климатические условия местности. Значительная часть тепла уходит через систему вентиляции. Парадокс заключается в том, что при выполнении расчетов многие начинающие домостроители забывают учесть этот параметр и получают цифры, далекие от объективности.

Теплоизолирующие свойства ограждающих конструкций

По теплоизолирующим свойствам ограждающих конструкций выделяются две категории зданий по энергоэффективности:

  • Класс С. Отличается нормальными показателями. К этому классу относятся дома старой постройки и значительная часть новостроек в малоэтажном строительстве. Типовой кирпичный или бревенчатый дом будет иметь класс С.
  • Класс А. Эти дома имеют очень высокий показатель энергоэффективности. В их строительстве используются современные теплоизолирующие материалы. Все строительные конструкции выполнены таким образом, чтобы минимизировать потери тепла.

Зная, к какой категории относится дом, приняв во внимание климатические условия, можно начинать расчеты. Использовать для этого специальные программы или обойтись «дедовскими» методами и считать с помощью ручки и бумаги, решать владельцу дома. Коэффициент теплопередачи для ограждающих конструкций можно рассчитать табличными методами.

Зная, какие материалы были использованы для строительства и утепления дома, какие установлены стеклопакеты (сейчас на рынке немало энергосберегающих вариантов), можно найти все необходимые показатели в специальных таблицах.

Приступаем к расчетам

Если верить специальной литературе и учебникам, тепло уходит из зданий и сооружений разными способами — конвекцией, излучением и т. п. Конечно, можно учесть при подсчетах и этот параметр, но на практике такие сложности абсолютно не нужны. Достаточно использовать общие формулы. В некоторых случаях к полученному результату необходимо добавить несколько процентов. Проводить такие расчеты значительно проще, чем углубляться в дебри узкоспециальных наук.

Сбросить со счетов можно и такие параметры, как тепло, получаемое через окна от солнечного света, поправку на ориентацию здания по сторонам света. Несколько недостающих ватт можно просто прибавить к полученным результатам. Нужны максимально точные результаты? Тогда своими силами, без специалистов, обойтись все равно не получится, даже с использованием специальных программ.

Пользуясь общими формулами, нужно помнить еще один важный момент. Помещения в доме имеют разное предназначение. Некоторые из них вообще необитаемы, например, кладовые и холлы, а значит, показатели нормальной температуры в них будут ниже, чем в жилых комнатах. При этом принцип расчета будет одинаковым, независимо от «обитаемости» комнаты.

Способ простой — «на глазок»

Как бы парадоксально это ни звучало, но простейшие расчеты можно сделать вообще без формул, методик и программ. Просто «на глаз». Для каждой местности существуют свои усредненные показатели. Например, в климатических условиях Центрального региона для отопления 10 кв. метров площади, при высоте потолков менее 3 метров, потребуется 1 кВт мощности. Такая «усредненная комната» имеет одну наружную стену и одно окно. В реальной комнате количество окон больше? Значит, мощностные показатели немного увеличиваются.

Такой расчет — самый грубый. Он позволяет прикинуть мощность котла и количество радиаторов. Решив считать таким способом, нужно помнить, что усредненные показатели могут не подходить для конкретного дома. Здание плохо утеплено? Мощности котла, рассчитанной таким методом, будет недостаточно. Владелец не экономил на теплоизоляции? Котел с усредненной мощности тоже не подойдет. В лучшем случае дома будет невыносимо жарко. Как видим, такой подсчет простой, но неперспективный.

Способ точный — теплопотери ограждающих конструкций

Более точные данные получаем другим методом. Сначала определяется площадь всех стен в доме. Из нее вычитается общая площадь оконных и дверных проемов. Отдельно определяем площадь кровли и пола. Все эти данные подставляем в формулу dQ=SxdT/R, где:

dT — дельта температур, или разница между температурой дома и на улице

R — сопротивление теплопередаче

Q, естественно, сами рассчитываем теплопотери и делаем расчеты для каждой ограждающей конструкции. Полученные результаты суммируем — получаем общие теплопотери. К полученной цифре добавляем потери на вентиляцию.

Такого расчета вполне достаточно, чтобы определить оптимальную мощность котла. С другой стороны, полученные этим способом данные не расскажут о том, сколько радиаторов потребуется для обеспечения тепла в каждой комнате.

Читать еще:  Ремонт газовых колонок Beretta

Способ оптимальный — покомнатный расчет

При выполнении покомнатного расчета обязательно должна учитываться вентиляция. В соответствии со СНиП, в помещении должен обеспечиваться однократный воздухообмен за один час. На практике, такие показатели практически никогда не достигаются, но это не значит, что вентиляция не будет уносить тепло. Допустимо сокращение воздухообмена, но полностью обойтись без вентиляции нельзя.

Кухня имеет площадь 15,1м2. Но нас интересует площадь ограждающих конструкций.

Для расчёта примем, что стена кухни с большим окном находится с северной стороны.

В расчётах допускается округлять значения до десятков Вт.

Площадь северной стены: (Длина)5,34м x (Высота)3,3м = 17,62 м2.

Обмер помещение производится по внешней стороне. Если часть стены приходится на угол, то учитывается вся длинна стены. Если стена смежная, то берём половину толщины стены.

Площадь проёма окна: 1,8 х 2,0 = 3,6 м2.

Т.к. нас интересует площадь именно стены, то вычитаем площадь окна: 17,62-3,6=14,02м2.

Площадь восточной стены: 3,1м x 3,3м = 10,23-1,8 = 8,43м2.

Площадь проёма окна: 0,9 х 2,0 = 1,8 м2.

Коэффициенты теплопроводности стен коттеджа высчитываются в зависимости от материалов и толщины стены.

Стен: R=3,29 м2*С/Вт

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт, но

с учётом инфильтрации в коттедже на 1 этаже: 0,25 м2*С/Вт.

Есть несколько методов учёта инфильтрации. Но суть общая: добавляется коэффициент, который зависит от разности давления (на это есть таблицы в разных справочниках и учебниках). Мы на работе пробовали считать разными методами. Цифры в итоге получаются примерно одинаковые. В итоге самый быстрый и простой способ — сразу изменить коэффициент теплопроводности окна.

Для г.Чебоксары температура холодной пятидневки -32С.

Температура помещения кухни: +18С.

Если помещение угловое, то температура внутри помещение для расчёта берётся на 2 градуса больше. (+18+2=+20 градусов)

Разница температур: 52С.

Стена выходит на север, появляется добавочный коэффициент +10%.

В помещение 2 наружные стены +5%

14,02*(1/3,29)*52*1,15=254,83 Вт — теплопотери северной стены.

3,6*(1/0,25)*52*1,15=861,12 Вт — теплопотери окна.

8,43*(1/3,29)*52*1,15=153,23 Вт — теплопотери восточной стены.

1,8*(1/0,25)*52*1,15=430,56 Вт — теплопотери окна.

Если в доме нет подвала и/или этот этаж последний — то необходимо добавить ещё и теплопотери через покрытие пола и/или потолка.

Теплопотери пола считаются по зонам, если пол на земле, расскажу об этом позже.

Сейчас у нас простой пример.

Итого: 1699,74Вт — округлим — 1700Вт — теплопотери кухни.

Обычно к расчётам всегда прибавляют 10-20% — на различные неучтённости: 1700*1.1 = 1870Вт.

Теперь необходимо подобрать отопительное оборудование для кухни.

Более подробно о расчёте теплопотерь вы можете узнать в учебниках.

1. Справочник под ред. Староверова. Отопление. Часть 1.

2. Отопление и Вентиляция. Часть 2. Богословский В.Н.

3. Отопление. Богословский В.Н., Сканави А.Н.

Дубликаты не найдены

=Обычно к расчётам всегда прибавляют 10-20% — на различные неучтённости: 1700*1.1 = 1870Вт.

Скромный личный опыт в строительстве подсказывает, что надо добавлять 30%. Причина: несоответствие заявленных характеристик теплоизолирующих материалов. Такая же петрушка и с теплоотдачей радиаторов.

Согласен. Просто при подборе радиаторов отопления стараюсь учесть реальную теплоотдачу + округление в большую сторону.

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт, но
с учётом инфильтрации в коттедже на 1 этаже: 0,25 м2*С/Вт.

Не имеют современные окна инфильтрации. Совсем не имеют.

Но этим самым мы как раз и учитываем расход тепла на нагрев воздуха. Либо можно тут не учитывать, а рассчитать отдельно расход тепла на нагрев поступающего воздуха из расчёта 3м3 воздуха на 1м2 комнаты.

А не надо учитывать на окнах. Это какой то кривой метод.

Есть вентиляция её и надо считать.

А давай те сравним итоговые цифры. Сделай те ваш расчёт по исходным данным из поста.

Мне тоже действительно интересно.

Вентиляция кухни 90 м3/час 90*1,2*1005*52=1567 Вт/час. Но раскидывать надо на весь дом с учётом кол проживающих и объёма.

Изолированно не учесть.

Я сейчас подставил для окон коэффициент 0,56 — итоговые теплопотери кухни БЕЗ инфильтрации получились = 985Вт

Прибавляем расход на вентиляцию 1567: 985+1567 = 2552Вт.

Т.е. совместными усилиями получаем такую цифру? И она тоже верная.

Но скажите мне, кто в -32 будет открывать окна и форточки для создания положенной вентиляции. И если уменьшить объём вентиляции в половину — 45м3 — то суммарные затраты:

И вот это более «реально-бытовая» цифра на основе моего опыта.

А если устанавливать приточную установку — тогда механическая вентиляция вообще в расчёте не участвует.

Приточка в любом случае со своим подогревом, не радиаторы же её нагревают.

Но я не инженер-теплотехник

Но скажите мне, кто в -32 будет открывать окна и форточки для создания положенной вентиляции.

А откуда вы возьмёте инфильтрацию через пластиковое окно ?

И если уменьшить объём вентиляции в половину — 45м3

Ну как бы нежелательно для кухни, запахи будут.

Доводы ваши верные и с ними согласен. «Возьму на вооружение». Цель моих постов как раз отчасти и в том, что бы ОБСУДИТЬ.

Но откуда то воздух для вытяжки берётся 🙂

В большинстве случаев как раз из неучтённой инфильтрации. Но могу заметить, сейчас её явно не хватает для нормальной вентиляции. И приходится делать приточку.

Потери дома это: теплопотери через конструкции + инфильтрация+ всякое разное+вентиляция.

Инфильтрация в большинстве случаев это очень незначительная величина по сравнению с вентиляцией.

Поэтому её в топку, а считать только потери через конструкции+ всякое разное+вентиляция.

Не первый раз замечаю вот такие вещи в расчетах в вводных данных

Температура помещения кухни: +18С

18 градусов в помещении это п. ц дубак, 22 в помещении это комфортная температура для сна под одеялком, а в среднем что называется «уютно» это 24градуса. Конечно все зависит от личных предпочтений и типа отопления, на сколько холодный пол сквозняки там и все такое, но 18.

Коэффициент теплопроводности для пластикового окна примерно равен 0,56 м2*С/Вт

ТС, это не коэффициент теплопроводности.

Коэффициент теплопроводности имеет размерность Вт/(м·K).

В приведённом расчёте ни слова не сказано о зависимости теплопотерь от скорости ветра снаружи (см «роза ветров» и «средняя скорость в течение расчётного периода времени»), а коэффициент теплоотдачи сильно зависит именно что от скорости.

Тоже заметил про коэффициент. Остается добавить только, что в расчете у ТС-а указано термическое сопротивление.

Согласно нормам. Что посчитать необходимый минимум. А так в программе можно менять температуру.

Скажите, эти формулы будут корректно работать при плюсовых температурах? Логика мне подсказывает, что должны, но мало ли, есть подводные камни.

Просто у меня следующая ситуация: Есть гараж, в доме. Он очень плохо утеплен. В нём стоят радиаторы отопления, но их мало. В планах его утеплить, но пока нет денег — предыдущей зимой при -20 на улице в гараже было -3, и-за чего дома было очень холодно на 1 этаже, а в комнатах на 2-м этаже, над гаражом пол был очень холодный. Сейчас у меня стоит задача приколхозить утепление на ворота(главный источник потерь тепла) и добавить источники тепла(электрические). Рассчитать потери заранее не представляется возможным, т.к. очень много неизвестных(вроде пары щелей).

Я хочу заранее знать, хватит ли утеплителя, и сколько кВт нужны обогреватели(чтобы не оказаться зимой с замершей задницей), поэтому хочу утеплить гараж сейчас, поставить в нём 1 обогреватель на 3 кВт на сутки и замерить температуру в гараже, на улице, и в помещениях рядом, таким образом, получив примерную величину R(для всей площади), и уже подставив её же в формулу с температурами для зимнего периода, посчитать требуемую мощность отопления и докупить обогреватели, если надо, и сделать утеплитеь лучше

Расчёт теплопотерь частного дома с примерами

Чтобы ваш дом не оказался бездонной ямой для расходов на отопление, предлагаем изучить базовые направления теплотехнических изысканий и методологию расчётов. Без предварительного расчёта тепловой проницаемости и влагонакопления теряется вся суть жилищного строительства.

Физика теплотехнических процессов

Различные области физики имеют много схожего в описании явлений, которые ими изучаются. Так и в теплотехнике: принципы, описывающие термодинамические системы, наглядно перекликаются с основами электромагнетизма, гидродинамики и классической механики. В конце концов, речь идёт об описании одного и того же мира, поэтому не удивительно, что модели физических процессов характеризуются некоторыми общими чертами во многих областях исследований.

Суть тепловых явлений понять легко. Температура тела или степень его нагрева есть не что иное, как мера интенсивности колебаний элементарных частиц, из которых это тело состоит. Очевидно, что при столкновении двух частиц та, у которой энергетический уровень выше, будет передавать энергию частице с меньшей энергией, но никогда наоборот. Однако это не единственный путь обмена энергией, передача возможна также посредством квантов теплового излучения. При этом базовый принцип обязательно сохраняется: квант, излученный менее нагретым атомом, не в состоянии передать энергию более горячей элементарной частице. Он попросту отражается от неё и либо пропадает бесследно, либо передаёт свою энергию другому атому с меньшей энергией.

Термодинамика хороша тем, что происходящие в ней процессы абсолютно наглядны и могут интерпретироваться под видом различных моделей. Главное — соблюдать базовые постулаты, такие как закон передачи энергии и термодинамического равновесия. Так что если ваше представление соответствует этим правилам, вы легко поймёте методику теплотехнических расчётов от и до.

Понятие сопротивления теплопередаче

Способность того или иного материала передавать тепло называется теплопроводностью. В общем случае она всегда выше, чем больше плотность вещества и чем лучше его структура приспособлена для передачи кинетических колебаний.

Сравнение энергоэффективности различных строительных материалов

Величиной, обратно пропорциональной тепловой проводимости, является термическое сопротивление. У каждого материала это свойство принимает уникальные значения в зависимости от структуры, формы, а также ряда прочих факторов. Например, эффективность передачи тепла в толще материалов и в зоне их контакта с другими средами могут отличаться, особенно если между материалами есть хотя бы минимальная прослойка вещества в другом агрегатном состоянии. Количественно термическое сопротивление выражается как разница температур, разделённая на мощность теплового потока:

  • Rt — термическое сопротивление участка, К/Вт;
  • T2 — температура начала участка, К;
  • T1 — температура конца участка, К;
  • P — тепловой поток, Вт.
Читать еще:  Испечь хлеб чтобы выйти замуж

В контексте расчёта теплопотерь термическое сопротивление играет определяющую роль. Любая ограждающая конструкция может быть представлена как плоскопараллельная преграда на пути теплового потока. Её общее термическое сопротивление складывается из сопротивлений каждого слоя, при этом все перегородки складываются в пространственную конструкцию, являющуюся, собственно, зданием.

Rt = l / (λ·S)

  • Rt — термическое сопротивление участка цепи, К/Вт;
  • l — длина участка тепловой цепи, м;
  • λ — коэффициент теплопроводности материала, Вт/(м·К);
  • S — площадь поперечного сечения участка, м 2 .

Факторы, влияющие на теплопотери

Тепловые процессы хорошо коррелируют с электротехническими: в роли напряжения выступает разница температур, тепловой поток можно рассматривать как силу тока, ну а для сопротивления даже своего термина придумывать не нужно. Также в полной степени справедливо и понятие наименьшего сопротивления, фигурирующего в теплотехнике как мостики холода.

Если рассматривать произвольный материал в разрезе, достаточно легко установить путь теплового потока как на микро-, так и на макроуровне. В качестве первой модели примем бетонную стену, в которой по технологической необходимости выполнены сквозные крепления стальными стержнями произвольного сечения. Сталь проводит тепло несколько лучше бетона, поэтому мы можем выделить три основных тепловых потока:

  • через толщу бетона
  • через стальные стержни
  • от стальных стержней к бетону

Теплопотери через мостики холода в бетоне

Модель последнего теплового потока наиболее занимательна. Поскольку стальной стержень прогревается быстрее, то ближе к наружной части стены будет наблюдаться разница температур двух материалов. Таким образом, сталь не только «перекачивает» тепло наружу сама по себе, она также увеличивает тепловую проводимость прилегающих к ней масс бетона.

В пористых средах тепловые процессы протекают похожим образом. Практически все строительные материалы состоят из разветвлённой паутины твёрдого вещества, пространство между которым заполнено воздухом. Таким образом, основным проводником тепла служит твёрдый, плотный материал, но за счёт сложной структуры путь, по которому распространяется теплота, оказывается больше поперечного сечения. Таким образом, второй фактор, определяющий термическое сопротивление, это неоднородность каждого слоя и ограждающей конструкции в целом.

Уменьшение теплопотерь и смещение точки росы в утеплитель при наружном утеплении стены

Третьим фактором, влияющим на теплопроводность, мы можем назвать накопление влаги в порах. Вода имеет термическое сопротивление в 20–25 раз ниже, чем у воздуха, таким образом, если она наполняет поры, в целом теплопроводность материала становится даже выше, чем если бы пор вообще не было. При замерзании воды ситуация становится ещё хуже: теплопроводность может возрасти до 80 раз. Источником влаги, как правило, служит комнатный воздух и атмосферные осадки. Соответственно, три основных метода борьбы с таким явлением — это наружная гидроизоляция стен, использование парозащиты и расчёт влагонакопления, который обязательно производится параллельно прогнозированию теплопотерь.

Дифференцированные схемы расчёта

Простейший способ установить размер тепловых потерь здания — суммировать значения теплового потока через конструкции, которыми это здание образовано. Такая методика полностью учитывает разницу в структуре различных материалов, а также специфику теплового потока сквозь них и в узлах примыкания одной плоскости к другой. Такой дихотомический подход сильно упрощает задачу, ведь разные ограждающие конструкции могут существенно отличаться в устройстве систем теплозащиты. Соответственно, при раздельном исследовании определить сумму теплопотерь проще, ведь для этого предусмотрены различные способы вычислений:

  • Для стен утечки теплоты количественно равны общей площади, умноженной на отношение разницы температур к тепловому сопротивлению. При этом обязательно берётся во внимание ориентация стен по сторонам света для учёта их нагрева в дневное время, а также продуваемость строительных конструкций.
  • Для перекрытий методика та же, но при этом учитывается наличие чердачного помещения и режим его эксплуатации. Также за комнатную температуру принимается значение на 3–5 °С выше, расчётная влажность тоже увеличена на 5–10%.
  • Теплопотери через пол рассчитывают зонально, описывая пояса по периметру здания. Связано это с тем, что температура грунта под полом выше у центра здания по сравнению с фундаментной частью.
  • Тепловой поток через остекление определяется паспортными данными окон, также нужно учитывать тип примыкания окон к стенам и глубину откосов.

Q = S · ( Δ T / Rt)

  • Q —тепловые потери, Вт;
  • S — площадь стен, м 2 ;
  • ΔT — разница температур внутри и снаружи помещения, ° С;
  • Rt — сопротивление теплопередаче, м 2 ·°С/Вт.

Пример расчёта

Прежде чем перейти к демонстрационному примеру, ответим на последний вопрос: как правильно рассчитать интегральное термическое сопротивление сложных многослойных конструкций? Это, конечно, можно сделать вручную, благо, что в современном строительстве используется не так много типов несущих оснований и систем утепления. Однако учесть при этом наличие декоративной отделки, интерьерной и фасадной штукатурки, а также влияние всех переходных процессов и прочих факторов достаточно сложно, лучше воспользоваться автоматизированными вычислениями. Один из лучших сетевых ресурсов для таких задач — smartcalc.ru, который дополнительно составляет диаграмму смещения точки росы в зависимости от климатических условий.

Для примера возьмём произвольное здание, изучив описание которого читатель сможет судить о наборе исходных данных, необходимых для расчёта. Имеется одноэтажный дом правильной прямоугольной формы размерами 8,5х10 м и высотой потолков 3,1 м, расположенный в Ленинградской области. В доме выполнен неутеплённый пол по грунту досками на лагах с воздушным зазором, высота пола на 0,15 м превышает отметку планирования грунта на участке. Материал стен — шлаковый монолит толщиной 42 см с внутренней цементно-известковой штукатуркой толщиной до 30 мм и наружной шлаково-цементной штукатуркой типа «шуба» толщиной до 50 мм. Общая площадь остекления — 9,5 м 2 , в качестве окон использован двухкамерный стеклопакет в теплосберегающем профиле с усреднённым термическим сопротивлением 0,32 м 2 ·°С/Вт. Перекрытие выполнено на деревянных балках: снизу оштукатурено по дранке, заполнено доменным шлаком и сверху укрыто глиняной стяжкой, над перекрытием — чердак холодного типа. Задача расчёта теплопотерь — формирование системы теплозащиты стен.

Первым делом определяются тепловые потери через пол. Поскольку их доля в общем оттоке тепла наименьшая, а также по причине большого числа переменных (плотность и тип грунта, глубина промерзания, массивность фундамента и т. д.), расчёт теплопотерь проводится по упрощённой методике с использованием приведённого сопротивления теплопередаче. По периметру здания, начиная от линии контакта с поверхностью земли, описывается четыре зоны — опоясывающих полосы шириной по 2 метра. Для каждой из зон принимается собственное значение приведённого сопротивления теплопередаче. В нашем случае имеется три зоны площадью по 74, 26 и 1 м 2 . Пусть вас не смущает общая сумма площадей зон, которая больше площади здания на 16 м 2 , причина тому — двойной пересчёт пересекающихся полос первой зоны в углах, где теплопотери значительно выше по сравнению с участками вдоль стен. Применяя значения сопротивления теплопередаче в 2,1, 4,3 и 8,6 м 2 ·°С/Вт для зон с первой по третью, мы определяем тепловой поток через каждую зону: 1,23, 0,21 и 0,05 кВт соответственно.

Используя данные о местности, а также материалы и толщину слоёв, которыми образованы стены, на упомянутом выше сервисе smartcalc.ru нужно заполнить соответствующие поля. По результатам расчёта сопротивление теплопередаче оказывается равным 1,13 м 2 ·°С/Вт, а тепловой поток через стену — 18,48 Вт на каждом квадратном метре. При общей площади стен (за вычетом остекления) в 105,2 м 2 общие теплопотери через стены составляют 1,95 кВт/ч. При этом потери тепла через окна составят 1,05 кВт.

Перекрытие и кровля

Расчёт теплопотерь через чердачное перекрытие также можно выполнить в онлайн-калькуляторе, выбрав нужный тип ограждающих конструкций. В результате сопротивление перекрытия теплопередаче составляет 0,66 м 2 ·°С/Вт, а потери тепла — 31,6 Вт с квадратного метра, то есть 2,7 кВт со всей площади ограждающей конструкции.

Итого суммарные теплопотери согласно расчётам составляют 7,2 кВт·ч. При достаточно низком качестве строительных конструкций здания этот показатель очевидно сильно ниже реального. На самом деле такой расчёт идеализирован, в нём не учтены специальные коэффициенты, продуваемость, конвекционная составляющая теплообмена, потери через вентиляцию и входные двери. В действительности, из-за некачественной установки окон, отсутствия защиты на примыкании кровли к мауэрлату и плохой гидроизоляции стен от фундамента реальные теплопотери могут быть в 2 или даже 3 раза больше расчётных. Тем не менее, даже базовые теплотехнические исследования помогают определиться, будут ли конструкции строящегося дома соответствовать санитарным нормам хотя бы в первом приближении.

Теплопотери дома

Напоследок дадим одну важную рекомендацию: если вы действительно хотите получить полное представление о тепловой физике конкретного здания, необходимо использовать понимание описанных в этом обзоре принципов и специальную литературу. Например, очень хорошим подспорьем в этом деле может стать справочное пособие Елены Малявиной «Теплопотери здания», где весьма подробно объяснена специфика теплотехнических процессов, даны ссылки на необходимые нормативные документы, а также приведены примеры расчётов и вся необходимая справочная информация.

Сообщества › Строительство (и всё что с ним связано) › Блог › Попытка посчитать теплопотери дома

Из ранее сделанного:
Про копку траншеи и установку опалубки смотреть здесь
Про заливку фундамента смотреть здесь
Про перекрытие фундамента здесь
Про стены первого этажа здесь
Про перекрытия первого этажа здесь
Про стены второго этажа здесь
Про перекрытия второго этажа здесь
Про крышу здесь
Про черновой потолок здесь
Про штукатурку стен здесь
Про установку окон и дверей здесь
Про карниз здесь
Гараж. Фундамент и стены.
Гараж. Стропила и обрешетка
Стяжка пола
Крыши гаражей
«Доделки» по гаражу и забору
Штукатурка стен гаражей
Заливка полов первого этажа + кусочек отопления бонусом

В ожидании очередного строительного сезона, решил посчитать теплопотери дома.
В основном все считаю 1кВт на 10м2 площади строения, это я считаю очень приблизительным.

Ниже предоставляю мой расчет, с удовольствием выслушаю замечания

Базовая формула для подсчета расхода тепловой энергии через наружные ограждения выглядит следующим образом:

Q = 1/R х (tв — tн) х S х (1+ ∑β).

Здесь:
• Q — количество тепла, теряемого конструкцией одного типа, Вт;
• R — термическое сопротивление материала конструкции, м²°С / Вт;
• S — площадь наружного ограждения, м²;
• tв — температура внутреннего воздуха, °С;
• tн — наиболее низкая температура окружающей среды, °С;
• β — добавочные теплопотери, зависящие от ориентации здания.

1. Когда стена либо часть кровли повернута на север, северо-восток или северо-запад, то β = 0,1.
2. Если конструкция обращена на юго-восток или запад, β = 0,05.
3. β = 0, когда наружное ограждение выходит на южную или юго-западную сторону.

Термическое сопротивление стен либо кровли здания определяется исходя из свойств материала, из которого они сделаны, и толщины конструкции. Для этого используется формула

• λ — справочное значение теплопроводности материала стены, Вт/(м°С);
• δ — толщина слоя из этого материала, м.

Если стена возведена из 2 материалов (например, кирпич с утеплителем из минваты), то термическое сопротивление рассчитывается для каждого из них, а результаты суммируются. Уличная температура выбирается как по нормативным документам, так и по личным наблюдениям, внутренняя — по необходимости. Добавочные теплопотери — это коэффициенты, определенные нормами:

Предлагаю начать c теплопотерь через стены, и посчитаем теплопотери северной стены и далее по часовой стрелке, но для этого еще нужно посчитать R стены

Стена в 1 керамзитоблок + 100 мм каменной ваты

Rкерамзитобетонной кладки = δ / λ = 0,38/0,8 = 0,48 Вт/(м°С), считаю на самый холодный керамзитоблок
δ в моем случае 0,38 м
λ для керамзитобетона по разным источникам от 0,5 до 0,8 Вт/(м*К)
R слоя базальтового утеплителя = δ / λ = 0,1/0,045 = 2,22 Вт/(м°С);
δ в моем случае 0,1 м
λ для базальтового утеплителя примем 0,045 Вт/(м*К)

Читать еще:  Как утеплить дом из шлакоблока своими руками

R стены = 0,48+2,22 = 2,7 Вт/(м°С)

Далее приступаем к расчету теплопотерь через стены

Q северная стена = 1/R х (tв — tн) х S х (1+ ∑β) = 1/2,7х(23-(-37))х84х(1+0,1)=2053 Вт = 2,1 кВт

Q восточная стена = 1/R х (tв — tн) х S х (1+ ∑β) = 1/2,7х(23-(-37))х85х(1+0,1)=2078 Вт = 2,1 кВт
Q южная стена = 1/R х (tв — tн) х S х (1+ ∑β) = 1/2,7х(23-(-37))х74х(1+0)=1645 Вт = 1,65 кВт
Q западная стена = 1/R х (tв — tн) х S х (1+ ∑β) = 1/2,7х(23-(-37))х85х(1+0,1)=2078 Вт = 2,1 кВт
Q общ. стен = 2,1+2,1+1,65+2,1 = 7,95 кВт

ПОТОЛОК
Потолок: Доска 25 мм+ 300 мм минваты
R доски = δ / λ = 0,025/0,15 = 0,17 Вт/(м°С), считаю на самый холодный керамзитоблок
R слоя мин ваты= δ / λ = 0,3/0,045 = 6,7 Вт/(м°С)
R потолка = 0,17+6,7 = 6,87 Вт/(м°С)
Q потолок = 1/R х (tв — tн) х S х (1+ ∑β) = 1/6,87х(23-(-37))х190=1660 Вт =1,7 кВт

ЖБ плита серии ПК+30мм Техноплекс XPS+ 50 мм бетонная стяжка

R железобетонной пустотной плиты = 0,144 Вт/(м°С), взято с www.architectnew.ru/anps-1625-1.html

R техноплекса = 0,03/0,03=1 Вт/(м°С),

R бетонной стяжки = 0,05/1,5 = 0,03 Вт/(м°С)

R пол = 0,144+1+0,03=1,17 Вт/(м°С)

Q пол = 1/R х (tв — tн) х S х (1+ ∑β) = 1/1,17х(23-5)х190=2923 Вт = 2,9 кВт

Окна REHAU SIB-Design R=0.71 Вт/(м°С)

Q окна = 1/R х (tв — tн) х S х (1+ ∑β) = 1/0,71х(23-(-37))х42=3550 Вт = 3,6 кВт

Не захотел высчитывать и узнавать R дверей, возьму значение от окон

Q двери = 1/R х (tв — tн) х S х (1+ ∑β) = 1/0,71х(23-(-37))х8=676 Вт = 0,7 кВт

Выполняя расчет теплопотерь здания, важно учесть количество тепловой энергии, расходуемой системой отопления на подогрев вентиляционного воздуха. Доля этой энергии достигает 30% от общих потерь, поэтому игнорировать ее недопустимо

Решил не считать, а взять 30%

Qобщ = Q общ. стен+ Q потолок+ Q пол+ Q окна+ Q двери=7,95+1,7+2,9+(3,6+0,7)*2=21,15 кВт+30% (вентиляция)=27,5 кВт

Теплопотери через окна и двери взял с запасом в 2 раза

Как то так я насчитал
Спасибо за внимание

Расчет теплопотерь дома – калькулятор онлайн

Для того, чтобы спроектировать систему отопления, которая удовлетворяла бы как требованиям комфортного проживания в доме, так и оптимального расходования ресурсов семьи, необходимо сначала рассчитать его возможные теплопотери.

Расчет теплопотерь — это способ, определить примерное количество теплопотерь, которое теряет дом через ограждающий контур за конкретное время, в самый холодный период пятидневки. Единица измерения теплопотерь — Ватты.

Полученный результат приблизительный, и требует экспериментальной проверки, так как не реально учесть все моменты, которые влияют на тепловые потери: неправильная конструкция перегородок, разница между температурой внутри и снаружи, действие осадков, солнечной радиации и ветра. Зная данные показатели, можно выбирать модель системы отопления нужной мощности для любого дома.

Калькулятор онлайн

Логика расчета

Процентное соотношение теплопотерь дома через элементы его конструкции, указанное на картинке, весьма приблизительно, поскольку сильно зависит от их устройства и используемых материалов. Потери тепла на инфильтрацию происходят в результате утечки воздуха через щели, некачественное уплотнение дверей и окон, принудительной и естественной вентиляции помещений. Уносимое с воздухом тепло приходится компенсировать более интенсивной работой системы отопления.

Расчет теплопотерь в данной программе выполняется отдельно для каждой стены, пола и потолка с учетом общих для всех элементов помещения условий. Это сделано исходя из следующих предположений:

  • стены могут как непосредственно соприкасаться с атмосферным воздухом, так и выходить в нетапливаемое или плохо отапливаемые помещения;
  • исходя из этого толщина стен и используемый для них материал могут отличаться;
  • конструкция окон также может быть неодинакова.

Для расчета теплопотерь помещения в общем случае необходима площадь рассматриваемых элементов, характеристики теплопроводности или сопротивления теплопередаче используемых материалов и их толщина, а также разница между температурой воздуха внутри помещения (20-22 градуса) и температурой воздуха снаружи.

Температура атмосферного воздуха должна приниматься по самому холодному периоду отопительного сезона и указывается в общих условиях для расчета; если для какой-то стены она другая, введите ее в поле “температура воздуха снаружи помещения”. Для потолка температура, отличная от атмосферной, может быть введена в поле “температура над”, а для пола – “температура снизу”(вводится обязательно). Температура над потолком зависит от наличия или отсутствия утепления чердачного помещения; под полом – от наличия или отсутствия подвала и его типа (чаще всего принимается 0-7+ градусов).

Наружные двери могут выходить прямо на улицу или в неотапливаемое помещение; последнее обстоятельство учитывается в программе умножением рассчитанных теплопотерь через дверь на коэффициент 0.7.

Расчетные потери тепла на инфильтрацию воздуха можно регулировать варьируя значения, вводимые в поле “доля объема воздуха в помещении, подлежащая ежечасному обмену”; дело в том, что требуемый СНИПом ежечасный обмен всего объема воздуха, находящегося в доме, на практике считается завышенным и приводящим к большим затратам на отопление.

Коэффициенты теплопроводности используемых в строительстве материалов берутся из соответствующих таблиц или по данным изготовителей. Это касается и сопротивления теплопередачи стеклопакетов и им подобных конструкций. Что касается стеклопакетов, то при их выборе следует обращать внимание на обозначение.

Например, в обозначении стеклопакета 4-10ap-4: 4 -толщина стекла; 10-расстояние между стеклами; ap – указывает, что это пространство заполнено инертным газом аргоном, что повышает его сопротивление теплопередаче.

В обозначении 4-14-4-14-4и “и” указывает,что стекла имеют мягкое низко эмиссионное покрытие; к-стекло имеет более твердое покрытие, защищено от мелких повреждений, его покрытие низко эмиссионное; pi – на стекло нанесена энергосберегающая пленка и др.

Приведенная в правой части рисунка схема относится к случаю, когда под домом нет подвала (“пол на грунте”) для упрощения решения сложной задачи определения теплопотерь через пол в грунт применяется методика разбиения площади ограждающих конструкций на 4 зоны.

Каждая из четырех зон имеет свое фиксированное сопротивление теплопередаче в м2·°с/вт:r1=2,1 r2=4,3 r3=8,6 r4=14,2. Зона 1 представляет собой полосу (при отсутствии заглубления грунта под строением) шириной 2 метра, отмеренную от внутренней поверхности наружных стен вдоль всего периметра; зоны 2 и 3 имеют также ширину 2 метра и располагаются за зоной 1 ближе к центру здания; зона 4 занимает всю оставшуюся центральную площадь.

В действительности же зоны 3 и 4 при небольших размерах дома могут отсутствовать. В заключение следует указать, что в программе используются следующие общепринятые коэффициенты:

  • 23 – коэфф. теплоотдачи от стен к наружному воздуху
  • 8.7 – коэфф. теплоотдачи от внутреннего воздуха к стенам
  • 6 – коэфф. теплоотдачи от внутреннего воздуха к полу
  • 12 – коэфф. теплоотдачи от потолка к наружному воздуху если неотапливаемый чердак,
  • 1.18 – поправочный коэфф. при расчете теплопотерь пола не на грунте (по снип).

А также доступные в калькуляторе коэфф. теплоотдачи от пола к наружному воздуху/грунту для различных видов подвалов. Необходимо также отметить,что по правилам обмера зданий для расчета теплопотерь длина стен определяется по его наружному периметру, а их высота – от поверхности чистового пола до верхней плоскости потолочного перекрытия. Эту величину следует указывать в поле “высота помещений hp”.

Общие замечания по порядку расчета

  • Сначала рассчитываются теплопотери через двери, стены и окна, все сразу, то есть после ввода всех данных по ним, или по отдельности – после ввода параметров, например по одной из стен или двери; затем рассчитываются таким же образом теплопотери через потолок, пол и потери на инфильтрацию.
  • Каждый элемент может быть пересчитанный повторно после корректировки его параметров; при этом следует учесть, что если вы изменяете количество слоев материалов, сами материалы, наличие или отсутствие окон, перед всеми этими действиями следует нажать кнопку “сброс входных данных”.
  • Расчет теплопотерь через пол, потолок и инфильтрацию возможен только после расчета потерь через стены.
  • “Температура воздуха снаружи” (для стен) и “температура над” (для потолка) вводятся в случае, если они отличаются от температуры, указанной в общих условиях для расчета.
  • Перед расчетом теплопотерь через стены из их площади вычитается площадь окон и двери.

Потери тепла через наружную оболочку

Значительно повышается экономия тепловой энергии при качественном утеплении контура дома и крыши. Необходимость в энергосберегающем ремонте возникает, когда в течение года тратится 100 кВт электрической энергии или 10 кубов природного газа, из расчёта на 1 кв. метр отапливаемой площади, с учётом перегородок.

Энергосберегающее здание — дом, имеющий сплошную теплоизоляцию по всему каркасу нагретой поверхности. В качестве теплоизолирующего материала отлично подходит пеностекло, фанера, пенопласт, гипсокартон. Металл (сталь), также является отличным проводником тепловой энергии. Приобретая стройматериалы, обязательно нужно обращать внимание на коэффициент теплопроводности, который указан в паспорте.

Варианты выхода нагретого воздуха:

  • Крыша — толстый слой теплоизоляционного кровельного материала значительно уменьшит теплопотери.
    К сведению: Если строение деревянное, то укладка теплозащиты на крыше затруднительна, так как происходит набухание древесины, и она может повредиться от влажности.
  • Стены — добиться снижения теплопотерь можно также используя специальное наружное покрытие. При утеплении изнутри, особенно если повышенная влажность, будет образовываться конденсат за изоляцией.
  • Пол — в данном случае, практичнее делать утепление изнутри.
  • Фундамент — его контакт с холодным грунтом значительно увеличивает теплопотерю на первом этаже.
  • Термические мосты — наружные теплопроводники, не редко через них уходит большая часть нагретого воздуха. К ним относятся: бетонное половое покрытие, которое продолжается на балконе, дверные проёмы и окна, особенно классические, двойные. Есть также мосты, относящие к временным, когда перегородки крепятся на металлические элементы.

Современные окна — это стеклопакеты однокамерные и двухкамерные, имеющие специальную отражающую поверхность, что понижает потери излучения. Многослойное остекление более эффективно сохраняет тепло, чем обычное двойное окно.

Тепловые потери на вентиляцию

Обычно, у дома есть воздушные утечки — это оконные и дверные проёмы, и крыша, что создаёт воздухообмен. Но в зимнее время, этот вариант приводит к значительному выходу тёплого воздуха, поэтому с помощью новых технологий были разработаны конструкции уменьшающие утечку нагретых воздушных масс наружу.

Современные дома нуждаются в постоянном вентилировании, так как они имеют высокую воздухонепроницаемость. Для уменьшения теплопотерь связанных с вентиляцией, которые составляют от 10 до 40%, используются новейшие модели вентиляционных систем. Калькулятор теплопотерь дома делается по каждой комнате отдельно, Далее, определяется тепловой расход на вентиляцию — его объём и сколько раз происходила его смена в здание.

Рассчитывая теплотехнические вентиляционные потери, при помощи онлайн калькулятора, нужно учитывать предназначение дома. Для ванной комнаты и кухни требуется повышенный уровень вентиляции.

Минимальное утепление наружных стен

Для проведения онлайн теплотехнического расчёта для внешних стен существует несколько сложных методик, с учётом конвекционного обмена, излучения и т. д., но эти данные часто бывают излишними и не влияющими на итог.

Однако, есть более простой теплотехнический онлайн калькулятор для расчёта теплопотерь дома. Для большей точности, к данному показателю допустимо добавить 1 — 5%.

Важно! Применяя теплотехнический калькулятор, при расчёте потерь тепла дома, следует учитывать время пребывания человека в каждой комнате, чем оно меньше, тем за основу берутся меньшие температурные показания.

Есть два способа рассчитать расход тепла в доме:

  • Метод усреднённых величин — получается приблизительный результат. Расчёт делается по специальной таблице, которая составлена для разных областей с учётом особенностей их климата и средних характеристик здания.
  • Теплотехнический онлайн расчёт потерь тепла дома по периметру здания — площади всех внешних перегородок суммируются, и отнимается размер окон и дверей. Отдельно учитывается площадь крыши и пола, стройматериала и штукатурки. В дальнейшем калькулятор, для определения теплопотерь дома выглядит так: Q = S x ΔT/R, где S – размер полученной площади; ΔT – сведения о температурной разнице, внутри и снаружи; R – показатель сопротивления передачи тепла. R = n/λ;, где n – показатель толщины стен; λ – уровень удельной теплопроводности (Вт/м °C). Данное значение следует брать из таблицы, для необходимого стройматериала.

Материал

Коэффициент теплопроводимости

Ссылка на основную публикацию
Adblock
detector