7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Автоматизация теплогазоснабжения и вентиляции

Мухин О.А. Автоматизация систем теплогазоснабжения и вентиляции

Смотрите также

Богословского В.Н. Автоматизация систем теплогазоснабжения и вентиляции

Учеб. для вузов/А. А. Калмаков, Ю. Я. Кувшинов, С. С. Романова, С. А, Щелкунов; Под ред. В. Н. Богословского. — М.: Стройиздат, 1986 г. — 479 с: ил.

Изложены теоретические, инженерные и методические основы динамики систем теплогазоснабжения и кондиционирования микроклимата (ТГС и СКМ) как объектов автоматизации. Даны ос.

Калмаков А.А., и др. Автоматика и автоматизация систем теплогазоснабжения и вентиляции

Учеб. для вузов/А. А. Калмаков, Ю. Я- Кувшинов, С. С. Романова, С. А. Щелкунов; Под ред. В. Н. Богословского. — М.: Стройиздат, 1986. — 479 с.: ил.

Изложены теоретические, инженерные и методические основы динамики систем теплогазоснабжения и кондиционирования микроклимата (ТГС и СКМ) как объектов автоматизации. Даны осн.

Юрманов Б.Н. Автоматизация систем отопления, вентиляции и кондиционирования воздуха

Учеб. пособие для вузов. — Л., Стройиздат, Ленингр. отделение, 1976. — 216 с.

В учебном пособии излагаются основные понятия из теории автоматического регулирования и намечается инженерный подход к выбору типов регуляторов, приводится описание элементов регуляторов, разбираются достоинства и недостатки применяемых схем а.

Альбомы типовых проектных решений по автоматизации

Хабаровськ, 2005 г.
Альбом № 1 типовых проектных решений
«Автоматизация систем отопления и
горячего водоснабжения»

Альбом № 2 типовых проектных решений
«Автоматизация систем вентиляции».

Методические материалы для использования
в учебном процессе и в дипломном проектировании.

Бондарь Е.С. и др. Автоматизация систем вентиляции и кондиционирования воздуха

Учебное пособие. К.: Аванпост-Прим, 2005. — 560 с.

Учебное пособие является изложением курса «Спецтехнология» для подготовки наладчиков приборов, аппаратуры и систем автоматического контроля, регулирования и управления в области вентиляции и кондиционирования воздуха.
В книге описаны основные положения теории автома.

Автоматизация систем вентиляции

Методические материалы для использования. Без автора.
в учебном процессе и в дипломном проектировании для студентов специальности 290700 «Теплогазоснабжение и вентиляция» всех форм обучения.
Хабаровск 2004 г. Без автора.

Введение.
Система вентиляции с регулированием температуры приточного возду-ха.
Сист.

Втюрин В.А. Проектирование автоматизированных систем

Методические указания по курсовому проектированию для студентов специальности 220301.
«Автоматизация технологических процессов и производств» и по направлению 220200 «Автоматизация и управление». — СПб.: СПбГЛА, 2009. — 39с.

Содержание курсового проекта «Проектирование автоматизированных систем» (ПАС) определяется .

Полоцкий Л.М., Лапшенков Г.И. Автоматизация химических производств

Автоматизация химических производств. Теория, расчет и проектирование систем автоматизации. М.: Химия, 1982. — 295 с.
Рассмотрены общие вопросы автоматизации химических производств. Для студентов химико-технологических специальностей вузов.

Общие сведения об автоматических системах управления химическими производств.

Автоматизация процессов теплогазоснабжения и вентиляции (стр. 1 из 3)

Автоматизация процессов теплогазоснабжения и вентиляции

1. Системы обеспечения микроклимата как объекты автоматизации

Поддержание в зданиях и сооружениях заданных параметров микроклимата обеспечивается комплексом инженерных систем теплогазоснабжения и кондиционирования микроклимата. Этим комплексом осуществляется выработка тепловой энергии, транспортирование горячей воды, пара и газа по тепловым и газовым сетям к зданиям и использование этих энергоносителей для производственных и хозяйственных нужд, а также для поддержания в них заданных параметров микроклимата.

Система теплогазоснабжения и кондиционирования микроклимата включает в себя наружные системы централизованного теплоснабжения и газоснабжения, а также внутренние (расположенные внутри здания) инженерные системы обеспечения микроклимата, хозяйственных и производственных нужд.

Система централизованного теплоснабжения включает генераторы тепла (ТЭЦ, котельные) и тепловые сети, по которым осуществляется снабжение теплотой потребителей (систем отопления, вентиляции, кондиционирования воздуха и горячего водоснабжения).

Система централизованного газоснабжения включает газовые сети высокого, среднего и низкого давления, газораспределительные станции (ГРС), газорегуляторные пункты (ГРП) и установки (ГРУ). Она предназначена для снабжения газом теплогенерирующих установок, а также жилых, общественных и промышленных зданий.

Система кондиционирования микроклимата (СКМ) представляет собой комплекс средств, которые служат для поддержания в помещениях зданий заданных параметров микроклимата. К СКМ относятся системы отопления (СВ), вентиляции (СВ), кондиционирования воздуха (СКВ).

Режим отпуска теплоты и газа различен для различных потребителей. Так расход теплоты на отопление зависит в основном от параметров наружного климата, а потребление теплоты на горячее водоснабжение определяется расходом воды, который изменяется в течение суток и по дням недели. Теплопотребление на вентиляцию и кондиционирование воздуха зависит как от режима работы потребителей, так и от параметров наружного воздуха. Потребление газа изменяется по месяцам года, дням недели и по часам суток.

Надежное и экономичное снабжение теплотой и газом различных категорий потребителей достигается применением нескольких ступеней управления и регулирования. Централизованное управление отпуском теплоты осуществляется на ТЭЦ или в котельной. Однако оно не может обеспечить необходимый гидравлический и тепловой режимы у многочисленных потребителей теплоты. Поэтому применяются промежуточные ступени поддержания температуры и давления теплоносителя на центральных тепловых пунктах (ЦТП).

Управление работой систем газоснабжения осуществляется поддержанием постоянного давления в отдельных частях сети независимо от потребления газа. Требуемое давление в сети обеспечивается редуцированием газа в ГРС, ГРП, ГРУ. Кроме того.в ГРС и ГРП имеются устройства для отключения подачи газа при недопустимом повышении или понижении давления в сети.

Системы отопления, вентиляции и кондиционирования воздуха осуществляют регулирующие воздействия на микроклимат с целью приведения его внутренних параметров в соответствие с нормируемыми значениями. Поддержание температуры внутреннего воздуха в заданных пределах в течение отопительного периода обеспечивается системой отопления и достигается изменением количества теплоты, передаваемой в помещение отопительными приборами. Системы вентиляции предназначены для поддержания в помещении допустимых значений параметров микроклимата исходя из комфортных или технологических требований к параметрам внутреннего воздуха. Регулирование работой систем вентиляции осуществляется изменением расходов приточного и удаляемого воздуха. Системы кондиционирования воздуха обеспечивают поддержание в помещении оптимальных значений параметров микроклимата исходя из комфортных или технологических требований.

Системы горячего водоснабжения (СГВ) обеспечивают потребителей горячей водой для бытовых и хозяйственных нужд. Задача управления СГВ заключается в поддержании у потребителя заданной температуры воды при ее переменном потреблении.

2. Звено автоматизированной системы

Всякая система автоматического управления и регулирования состоит из отдельных элементов, выполняющих самостоятельные функции. Таким образом, элементы автоматизированной системы можно подразделить по их функциональному назначению.

В каждом элементе осуществляется преобразование каких-либо физических величин, характеризующих протекание процесса регулирования. Наименьшее число таких величин для элемента равно двум. Одна из этих величин является входной, а другая — выходной. Происходящее в большинстве элементов преобразование одной величины в другую имеют только одно направление. Например, в центробежном регуляторе изменение частоты вращения вала приводят к перемещению муфты, но перемещение муфты внешней силой не вызовет изменения частоты вращения вала. Такие элементы системы, обладающие одной степенью свободы, называют элементарными динамическими звеньями.

Объект управления можно рассматривать как одно из звеньев. Схема, отражающая состав звеньев и характер связи между ними, называется структурной схемой.

Связь между выходной и входной величинами элементарного динамического звена в условиях его равновесия называется статической характеристикой. Динамическое (во времени) преобразование величин в звене определяется соответствующим уравнением (обычно дифференциальным), а также совокупностью динамических характеристик звена.

Звенья, входящие в состав той или иной системы автоматического управления и регулирования, могут иметь разный принцип действия, разное конструктивное исполнение и т.п. В основу классификации звеньев положен характер зависимости между входной и выходной величинами в переходном процессе, который определяется порядком дифференциального уравнения, описывающего динамическое преобразование сигнала в звене. При такой классификации все конструктивное многообразие звеньев сводится к небольшому числу их основных типов. Рассмотрим основные типы звеньев.

Усилительное (безынерционное, идеальное, пропорциональное, безъемкостное) звено характеризуется мгновенной передачей сигнала со входа на выход. При этом выходная величина не меняется во времени, а динамическое уравнение совпадает со статической характеристикой и имеет вид

Здесь х, у — входная и выходная величины соответственно; к — коэффициент передачи.

Примерами усилительных звеньев могут служить рычаг, механическая передача, потенциометр, трансформатор.

Запаздывающее звено характеризуется тем, что выходная величина повторяет входную, но с запаздыванием Лт.

Здесь т- текущее время.

Примером запаздывающего звена является транспортное устройство или трубопровод.

Читать еще:  Утепление колодца на зиму своими руками

Апериодическое (инерционное, статическое, емкостное, релаксационное) звено преобразует входную величину в соответствие с уравнением

Здесь Г — постоянный коэффициент, характеризующий инерционность звена.

Примеры: помещение, воздухонагреватель, газгольдер, термопара и т.п.

Колебательное (двухъемкостное) звено преобразует входной сигнал в сигнал колебательной формы. Динамическое уравнение колебательного звена имеет вид:

Здесь Ti, Тг- постоянные коэффициенты.

Примеры: поплавковый дифманометр, мембранный пневмокла-пан и т.п.

Интегрирующее (астатическое, нейтральное) звено преобразует входной сигнал в соответствии с уравнением

Примером интегрирующего звена может служить электрическая цепь с индуктивностью или емкостью.

Дифференцирующее (импульсное) звено формирует на выходе сигнал, пропорциональный скорости изменения входной величины. Динамическое уравнение звена имеет вид:

Примеры: тахометр, демпфер в механических передачах. Обобщенное уравнение любого звена, объекта управления или автоматизированной системы в целом можно представить в виде:

где а, Ь — постоянные коэффициенты.

3. Переходные процессы в системах автоматического регулирования. Динамические характеристики звеньев

Процесс перехода системы или объекта регулирования из одного равновесного состояния в другое называется переходным процессом. Переходный процесс описывается функцией, которая может быть получена в результате решения динамического уравнения. Характер и продолжительность переходного процесса определяются структурой системы, динамическими характеристиками ее звеньев, видом возмущающего воздействия.

Внешние возмущения могут быть различными, но при анализе системы или ее элементов ограничиваются типовыми формами воздействий: единичным ступенчатым (скачкообразным) изменением во времени входной величины или ее периодическим изменением по гармоническому закону.

Динамические характеристики звена или системы определяют их реакцию на такие типовые формы воздействий. К ним относятся переходная, амплитудно-частотная, фазо-частотная, амплитудно-фазовая характеристики. Они характеризуют динамические свойства звена или автоматизированной системы в целом.

Переходная характеристика представляет собой реакцию звена или системы на единичное ступенчатое воздействие. Частотные характеристики отражают реакцию звена или системы на гармонические колебания входной величины. Амплитудно-частотная характеристика (АЧХ) — это зависимость отношения амплитуд выходного и входного сигналов от частоты колебаний. Зависимость сдвига по фазе колебаний выходного и входного сигналов от частоты называется фазо-частотной характеристик (ФЧХ). Объединив обе упомянутые характеристики на одном графике, получим комплексную частотную характеристику, которую называют еще амплитудно-фазовой характеристикой (АФХ).

Автоматизация теплогазоснабжения и вентиляции

Предисловие. 3
Введение. 5

Раздел I. Основы автоматизации производственных процессов

Глава 1. Общие сведения. 8
1.1 Значение автоматического управления производственными процессами. 8
1.2 Условия, аспекты и ступени автоматизации. 9
1.3 Особенности автоматизации систем ТГВ. 11

Глава 2. Основные понятия и определения. 12
2.1 Характеристика технологических процессов. 13
2.2 Основные определения. 14
2.3 Классификация подсистем автоматизации. 15

Раздел II. Основы теории управления и регулирования

Глава 3. Физические основы управления и структура систем. 18

3.1 Понятие об управлении простыми процессами (объектами). 18
3.2 Сущность процесса управления. 21
3.3 Понятие об обратной связи. 23
3.4 Автоматический регулятор и структура автоматической системы регулирования. 25
3.5 Два способа управления. 28
3.6 Основные принципы управления. 31

Глава 4. Объект управления и его свойства. 33
4.1 Аккумулирующая способность объекта. 34
4.2 Саморегулирование. Влияние внутренней обратной связи. 35
4.3 Запаздывание. 38
4.4 Статические характеристики объекта. 39
4.5 Динамический режим объекта. 41
4.6 Математические модели простейших объектов. 43
4.7 Управляемость объектов. 49

Глава 5. Типовые методы исследования АСР и АСУ. 50
5.1 Понятие о звене автоматической системы. 50
5.2 Основные типовые динамические звенья. 52
5.3 Операционный метод в автоматике. 53
5.4 Символическая запись уравнений динамики. 55
5.5 Структурные схемы. Соединение звеньев. 58
5.6 Передаточные функции типовых объектов. 60

Раздел III. Техника и средства автоматизации

Глава 6. Измерение и контроль параметров технологических процессов. 63
6.1 Классификация измеряемых величин. 63
6.2 Принципы и методы измерения (контроля). 64
6.3 Точность и погрешности измерений. 65
6.4 Классификация измерительной аппаратуры и датчиков. 67
6.5 Характеристики датчиков. 69
6.6 Государственная система промышленных приборов и средств автоматизации. 70

Глава 7. Средства измерения основных параметров в системах ТГВ. 71
7.1 Датчики температуры. 72
7.2 Датчики влажности газов (воздуха). 77
7.3 Датчики давления (разрежения). 80
7.4 Датчики расхода. 82
7.5 Измерение количества теплоты. 84
7.6 Датчики уровня раздела двух сред. 85
7.7 Определение химического состава веществ. 87
7.8 Прочие измерения. 89
7.9 Основные схемы включения электрических датчиков неэлектрических величин. 90
7.10 Суммирующие устройства. 94
7.11 Методы передачи сигналов. 96

Глава 8. Усилительно-преобразовательные устройства. 97
8.1 Гидравлические усилители. 97
8.2 Пневматические усилители. 101
8.3 Электрические усилители. Реле. 102
8.4 Электронные усилители. 104
8.5 Многокаскадное усиление. 107

Глава 9. Исполнительные устройства. 108
9.1 Гидравлические и пневматические исполнительные устройства. 109
9.2 Электрические исполнительные устройства. 111

Глава 10. Задающие устройства. 114
10.1 Классификация регуляторов по характеру задающего воздействия. 114
10.2 Основные виды задающих устройств. 115
10.3 АСР и микроЭВМ. 117

Глава 11. Регулирующие органы. 122
11.1 Характеристики распределительных органов. 123
11.2 Основные типы распределительных органов. 124
11.3 Регулирующие устройства. 126
11.4 Статические расчёты элементов регуляторов. 127

Глава 12. Автоматические регуляторы. 129
12.1 Классификация автоматических регуляторов. 130
12.2 Основные свойства регуляторов. 131
12.3 Регуляторы непрерывного и прерывистого действия. 133

Глава 13. Автоматические системы регулирования. 137
13.1 Статика регулирования. 138
13.2 Динамика регулирования. 140
13.3 Переходные процессы в АСР. 143
13.4 Устойчивость регулирования. 144
13.5 Критерии устойчивости. 146
13.6 Качество регулирования. 149
13.7 Основные законы (алгоритмы) регулирования. 152
13.8 Связанное регулирование. 160
13.9 Сравнительные характеристики и выбор регулятора. 161
13.10 Параметры настройки регуляторов. 164
13.11 Надёжность АСР. 166

Раздел IV. Техника и средства автоматизации

Глава 14. Проектирование схем автоматизации, монтаж и эксплуатация устройств автоматики. 168
14.1 Основы проектирования схем автоматизации. 168
14.2 Монтаж, наладка и эксплуатация средств автоматизации. 170

Глава 15. Автоматическое дистанционное управление электродвигателями. 172
15.1 Принципы релейно-контакторного управления. 172
15.2 Управление асинхронным электродвигателем с короткозамкнутым ротором. 174
15.3 Управление электродвигателем с фазным ротором. 176
15.4 Реверсирование и управление резервными электродвигателями. 177
15.5 Аппаратура цепей дистанционного управления. 179

Глава 16. Автоматизация систем теплоснабжения. 183
16.1 Основные принципы автоматизации. 183
16.2 Автоматизация районных тепловых станций. 187
16.3 Автоматизация насосных установок. 190
16.4 Автоматизация подпитки тепловых сетей. 192
16.5 Автоматизация конденсатных и дренажных устройств. 193
16.6 Автоматическая защита тепловой сети от повышения давления. 195
16.7 Автоматизация групповых тепловых пунктов. 197

Глава 17. Автоматизация систем теплопотребления. 200
17.1 Автоматизация систем горячего водоснабжения. 201
17.2 Принципы управления тепловыми режимами зданий. 202
17.3 Автоматизация отпуска теплоты в местных тепловых пунктах. 205
17.4 Индивидуальное регулирование теплового режима отапливаемых помещений. 213
17.5 Регулирование давления в системах отопления. 218

Глава 18. Автоматизация котельных малой мощности. 219
18.1 Основные принципы автоматизации котельных. 219
18.2 Автоматизация парогенераторов. 221
18.3 Технологические защиты котлов. 225
18.4 Автоматизация водогрейных котлов. 225
18.5 Автоматизация котлов на газовом топливе. 228
18.6 Автоматизация топливосжигающих устройств микрокотлов. 232
18.7 Автоматизация систем водоподготовки. 233
18.8 Автоматизация топливоподготовительных устройств. 235

Глава 19. Автоматизация вентиляционных систем. 237
19.1 Автоматизация вытяжных вентиляционных систем. 237
19.2 Автоматизация систем аспирации и пневмотранспорта. 240
19.3 Автоматизация аэрационных устройств. 241
19.4 Методы регулирования температуры воздуха. 243
19.5 Автоматизация приточных вентиляционных систем. 246
19.6 Автоматизация воздушных завес. 250
19.7 Автоматизация воздушного отопления. 251

Глава 20. Автоматизация установок искусственного климата. 253
20.1 Термодинамические основы автоматизации СКВ. 253
20.2 Принципы и способы регулирования влажности в СКВ. 255
20.3 Автоматизация центральных СКВ. 256
20.4 Автоматизация холодильных установок. 261
20.5 Автоматизация автономных кондиционеров. 264

Глава 21. Автоматизация систем газоснабжения и газопотребления. 265
21.1 Автоматическое регулирование давления и расхода газа. 265
21.2 Автоматизация газоиспользующих установок. 270
21.3 Автоматическая защита подземных трубопроводов от электрохимической коррозии. 275
21.4 Автоматизация при работе с жидкими газами. 277

Глава 22. Телемеханика и диспетчеризация. 280
22.1 Основные понятия. 280
22.2 Построение схем телемеханики. 282
22.3 Телемеханика и диспетчеризация в системах ТГВ. 285

Глава 23. Перспективы развития автоматики систем ТГВ. 288
23.1 Технико-экономическая оценка автоматизации. 288
23.2 Новые направления автоматизации систем ТГВ. 289

Читать еще:  Что такое регулятор газового давления

Мухин-Автоматизация систем теплогазоснабжения и вентиляции

Автоматизация систем теплогазоснабжения и вентиляции

ОГЛАВЛЕНИЕ

Раздел I. ОСНОВЫ АВТОМАТИЗАЦИИ ПРОИЗВОДСТВЕННЫХ ПРОЦЕССОВ

Глава 1. Общие сведения

  1. Значение автоматического управления производственными процессами
  2. Условия, аспекты и ступени автоматизации
  3. Особенности автоматизации систем ТГВ

Глава 2. Основные поиитии и определении

  1. Характеристика технологических процессов
  2. Основные определения
  3. Классификация подсистем автоматизации

Раздел II. ОСНОВЫ ТЕОРИИ УПРАВЛЕНИЯ И РЕГУЛИРОВАНИЯ

Глава 3. Физические основы управления и структура систем.

  1. Понятие об управлении простыми процессами (объектами)
  2. Сущность процесса управления
  3. Понятие об обратной связи
  4. Автоматический регулятор и структура автоматической системы регулирования
  5. Два способа управления
  1. сновные принципы управления

Глава 4. Объект управлении и его свойства

  1. Аккумулирующая способность объекта
  2. Саморегулирование. Влияние внутренней обратной связи
  3. Запаздывание
  4. Статические характеристики объекта
  5. Динамический режим объекта
  6. Математические модели простейших объектов
  7. Управляемость объектов

Глава 5. Типовые методы исследования АСР и АСУ

  1. Понятие о звене автоматической системы
  2. Основные типовые динамические звенья
  3. Операционный метод в автоматике
  4. Символическая запись уравнений динамики
  5. Структурные схемы. Соединение звеньев
  6. Передаточные функции типовых объектов

Раздел III. ТЕХНИКА И СРЕДСТВА АВТОМАТИЗАЦИИ

Глава 6. Измерение и контроль параметров технологических процессов

  1. Классификация измеряемых величин
  2. Принципы и методы измерения (контроля)
  3. Точность и погрешности измерений
  4. Классификация измерительной аппаратуры и датчиков
  5. Характеристики датчиков
  6. Государственная система промышленных приборов и средств автоматизации

Глава 7. Средства измерения основных параметров в системах ТГВ

  1. Датчики температуры
  2. Датчики влажности газов (воздуха)
  3. Датчики давления (разрежения)
  4. Датчики расхода
  5. Измерение количества теплоты
  6. Датчики уровня раздела двух сред
  7. Определение химического состава веществ
  8. Прочие измерения
  9. Основные схемы включения электрических датчиков не­электрических величин
  10. Суммирующие устройства
  11. Методы передачи сигналов

Глава 8. Усилительно-преобразовательные устройства

  1. Гидравлические усилители
  2. Пневматические усилители
  3. Электрические усилители. Реле
  4. Электронные усилители
  5. Многокаскадное усиление

Глава 9. Исполнительные устройства

  1. Гидравлические и пневматические исполнительные устройства
  2. Электрические исполнительные устройства

Глава 10. Задающие устройства

  1. Классификация регуляторов по характеру задающего воздействия
  2. Основные виды задающих устройств
  3. АСР и микроЭВМ

Глава 11. Регулирующие органы

  1. Характеристики распределительных органов
  2. Основные типы распределительных органов
  3. Регулирующие устройства
  4. Статические расчеты элементов регуляторов

Глава 12. Автоматические регуляторы

  1. Классификация автоматических регуляторов
  2. Основные свойства регуляторов

Глава 13. Автоматические системы регулирования

  1. Статика регулирования
  2. Дивамика регулирования
  3. Переходные процессы в АСР
  4. Устойчивость регулирования
  5. Критерии устойчивости
  6. Качество регулирования
  7. Основные законы (алгоритмы) регулирования
  8. Связанное регулирование
  9. Сравнительные характеристики и выбор регулятора
  10. Параметры настройки регуляторов
  11. Надежность АСР

Раздел IV. АВТОМАТИЗАЦИЯ В СИСТЕМАХ ТЕПЛОГАЗОСНАБЖЕНИЯ И ВЕНТИЛЯЦИИ

Глава 14. Проектирование схем автоматизации, монтаж и эксплуатация устройств автоматики

  1. Основы проектирования схем автоматизации
  2. Монтаж, наладка и эксплуатация средств автоматизации

Глава 15. Автоматическое дистанционное управление электродвигателями

  1. Принципы релейно-контакториого управления
  2. Управление асинхронным электродвигателем с коротко-замкнутым ротором
  3. Управление электродвигателем с фазным ротором
  4. Реверсирование и управление резервными электродвигателями
  5. Аппаратура цепей дистанционного управления

Глава 16. Автоматизации систем теплоснабжения

  1. Основные принципы автоматизации
  2. Автоматизация районных тепловых станций
  3. Автоматизация насосных установок
  4. Автоматизация подпитки тепловых сетей
  5. Автоматизация конденсатных и дренажных устройств
  6. Автоматическая защита тепловой сети от повышения давления
  7. Автоматизация групповых тепловых пунктов

Глава 17. Автоматизация систем теплопотребления

  1. Автоматизация систем горячего водоснабжения
  2. Принципы управления тепловыми режимами зданий
  3. Автоматизация отпуска теплоты в местных тепловых пунктах
  4. Индивидуальное регулирование теплового режима отап­ливаемых помещений
  5. Регулирование давления в системах отопления

Глава 18. Автоматизация котельных малой мощности

  1. Основные принципы автоматизации котельных
  2. Автоматизация парогенераторов
  3. Технологические защиты котлов
  4. Автоматизация водогрейных котлов
  5. Автоматизация котлов на газовом топливе
  6. Автоматизация топливосжигающих устройств микрокотлов
  7. Автоматизация систем водоподготовки
  8. Автоматизация топливоподготовительных устройств

Глава 19. Автоматизация вентиляционных систем

  1. Автоматизация вытяжных вентиляционных систем
  2. Автоматизация систем аспирации и пневмотранспорта
  3. Автоматизация аэрационных устройств
  4. Методы регулирования температуры воздуха
  5. Автоматизация приточных вентиляционных систем
  6. Автоматизация воздушных завес
  7. Автоматизация воздушного отопления

Глава 20. Автоматизация установок искусственного климата

  1. Термодинамические основы автоматизации СКВ
  2. Принципы и способы регулирования влажности в СКВ
  3. Автоматизация центральных СКВ
  4. Автоматизация холодильных установок
  5. Автоматизация автономных кондиционеров

Глава 21. Автоматизация систем газоснабжения и газопотребления

  1. Автоматическое регулирование давления и расхода газа
  2. Автоматизация газоиспользующих установок
  3. Автоматическая защита подземных трубопроводов от электрохимической коррозии
  4. Автоматизация при работе с жидкими газами

Глава 22. Телемеханика и диспетчеризация

  1. Основные понятия
  2. Построение схем телемеханики
  3. Телемеханика и диспетчеризация в системах ТГВ

Глава 23. Перспективы развития автоматики систем ТГВ

  1. Техиико-экономическая оценка автоматизации
  2. Новые направления автоматизации систем ТГВ

Широкое внедрение автоматики и средств автоматизации в различные от­расли техники вызвало необходимость изучения дисциплины «Автоматизация производственных процессов» студента ми практически всех инженерно-техни ческих специальностей высшей школы.

В задачу изучения дисциплины входит ознакомление с современными принципа­ми и методами эффективного управления производственными процессами и уста­новками, а также автоматическими сред­ствами. Излагаются основы теории управ­ления и регулирования, принцип дейст­вия п устройство средств автоматизации, основные принципиальные решения схем. применяемые в системах теплогазоснаб-жения и вентиляции (ТГВ) для повыше­ния производительности труда и эконо­мии топливно-энергетических ресурсов.

Автоматизация производственного процесса является вершиной в техниче­ском оснащении данной отрасли. Поэтому наряду с обязательными специальными знаниями по объектам автоматизации требуется серьезная подготовка по фун­даментальным дисциплинам — специальным разделам математики, физики, теоретической механике, электротехнике и др. Особенностью автоматики являет­ся переход от традиционных стационар­ных режимов и расчетов к нестационар­ным, динамическим, свойственным области использования средств автоматизации.

В книге рассмотрены современные отечественные автоматические системы, а также некоторые новейшие зарубежные разработки.

При автоматизации используется большой объем графического материала в виде различных схем, поэтому залогом успешного овладения курсом является обязательное знание азбуки автоматики — стандартных условных обозначений. При рассмотрении схем автоматиза­ции автор ограничился лишь принципи­альными решениями, предоставив возможность читателю расширить свои познания, пользуясь справочной и нормативной литературой.

Автоматизация систем теплогазоснабжения и вентиляции

Автоматизация систем теплогазоснабжения и вентиляции — Конспект Лекций, раздел Промышленность, Національний Університет .

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ

Основні положення ГОСТ 21.404-85

Тема 2.

СИСТЕМИ АВТОМАТИЧНОГО РЕГУЛЮВАННЯ.

Тема 3.

ВИМІРЮВАННЯ В СИСТЕМАХ ТГВ.

ВИМІРЮВАННЯ ВОЛОГОСТІ

3.1.Особливості вимірювання вологості.

3.3. Психрометричний метод.

3.4. Метод точки роси.

ВИМІРЮВАННЯ ТА КОНТРОЛЬ ХІМІЧНОГО СКЛАДУ ТА ФІЗИЧНИХ ВЛАСТИВОСТЕЙ ГАЗІВ.

3.6.Термомагнітні аналізатори О2.

3.7.Термокондуктометричний метод аналізу.

3.8.Оптико абсорбційні газоаналізатори.

3.9. Термохімічні газоаналізатори.

3.10. Іонізаційно-полум’яний метод вимірювання концентрацій горючих газів.

ВИМІРЮВАННЯ КІЛЬКОСТІ ЕНЕРГОНОСІЇВ.

3.11.Вимірювання кількості тепла.

3.12.Будова та принцип роботи теплових лічильників.

ВИМІРЮВАННЯ ВОЛОГОСТІ.

Особливості вимірювання вологості.

Сорбційно-кондуктометричний метод вимірювання вологості.

Психрометричний метод вимірювання вологості.

Метод точки роси.

ВИМІРЮВАННЯ КІЛЬКОСТІ ЕНЕРГОНОСІЇВ.

Вимірювання кількості тепла.

Будова та принцип роботи теплових лічильників.

Тема 4

МІКРОПРОЦЕСОРНІ КОНТРОЛЕРИ

Регулюючi прилади «ПРОТАР-110».

Перелiк функцiй, якi виконує прилад.

Функцiї, якi не потребують програмування структури.

ВИКОНАВЧІ МЕХАНІЗМИ ТА РЕГУЛЮЮЧІ ОРГАНИ СИСТЕМ АВТОМАТИКИ

Поршневі виконавчі механізми.

АВТОМАТИЗАЦІЯ СИСТЕМ ГАЗОПОСТАЧАННЯ.

Автоматизація об’єктів зберігання та розподілу рідких газів.

Тема 8

Тема 8

8. АВТОМАТИЗАЦІЯ ВЕНТИЛЯЦІЙНИХ СИСТЕМ.

8.1. Автоматизація витяжних систем.

8.2. Методи регулювання температури повітря.

8.3. Автоматизація приточних вентиляційних систем.

8.4. Автоматизація повітряних завіс.

Принципи автоматизації вентиляційних систем (ВС) залежать перш за все від передбачуваних енергетичних затрат на забезпечення санітарно-гігієнічних вимог і теплового режиму приміщень.

Головними задачами автоматизації ВС є забезпечення в приміщеннях і заданих точках системи необхідної температури, рухомості, чистоти повітряного середовища і необхідного повітрообміну при економній витраті теплової і електричної енергії.

8.1. Автоматизація витяжних систем.

Для найпростіших витяжних вентиляційних систем (ВВС), кількість котрих в сучасних будівлях і спорудах досить велика, основною підсистемою автоматизації є дистанційне керування приводом вентилятора. При наявності поворотних заслінок або «утепленого» клапана в системі необхідно забезпечити блокування: радіальний вентилятор пускається зі закритою сіткою, осьовий з відкритою. В залежності від вимог технологічного процесу який обслуговує ВВС послідовність включення ВВС і обладнання може бути різною. Для збереження повітряного балансу в ряді випадків необхідна синхронізація витяжних і приточних систем.

Важливу категорію представляють аварійні ВВС, котрі повинні автоматично вмикатись при раптовому поступленні в повітря шкідливих і вибухонебезпечних речовин.

В приміщеннях встановлюють автоматичні давачі-газоаналізатори гранично-допустимих концентрацій, які забезпечують автоматичний пуск ВВС. Крім того аварійна ВВС повинна автоматично включатись при зупинці будь-якої з систем.

За вимогами технології і для економії електроенергії використовуються комбіновані ВВС, у котрих механічна витяжка об’єднана з природною.

Читать еще:  Радиаторные терморегуляторы Danfoss Данфосс регулятор температуры отопления

Розглянемо ФСА такої ВВС, у якої додатково встановлено фільтр оснащений системою самоочищення ФРУ. Його електропривод блокується з пуском вентилятора В. Поворотні заслінки РО1 і РО2 встановлені так, що при аварійній зупинці або по закінченні роботи, автоматично відкривається заслінка котра забезпечує відкриття заслінки природної вентиляції РО1, котра при допомозі сервомотора відкривається, а заслінка РО2 закривається. Схема передбачує місцеве і дистанційне керування, вибір котрого здійснюється перемикачем HS, а також контроль за роботою установки при допомозі реле потоку повітря FS, розміщеного на повітропроводі. Необхідність такого контролю диктується небезпекою роботи вентилятора при закритій заслінці, коли сигналізація про його включений стан не буде відповідати нормальній роботі системи.

8.2. Методи регулювання температури повітря.

Для забезпечення заданого температурного режиму для вентиляції приміщень застосовують два основних способи регулювання, коли зовнішнє повітря проходить через повітропідігрівач або змішується у відповідній пропорції з реиркуляційним. При наявності регульованого параметру температури повітря і регулюючого (теплоносій) середовищ, керуюча дія може бути направлена може бути направлена на зміну витрати теплоносія через теплообмінник, на зміну теплової потужності повітронагрівача або об’єму повітря що проходить через систему підігріву.

Алгоритм керування визначається видом теплоносія.

Електронагрівачі , як правило, працюють в позиційному режимі зі ступеневим переключенням секцій нагріву.

Розташовувати давачі температури в приміщенні необхідно в місцях з достатньою циркуляцією, але слід захищати від струмин приточного повітря і опромінення від нагрітих і холодних поверхонь. Такий спосіб встановлення рекомендується, коли закономірності зміни температурного режиму носять випадковий характер (рис.10.2.б). Якщо тепловиділення стаціонарні і зміни температури наперед відомі, давачі температури можна встановлювати в повітропроводах(рис.10.2а,в). Таке встановлення рекомендується при роботі одної установки на декілька приміщень.

8.3. Автоматизація приточних вентиляційних систем.

Крім основних підсистем дистанційного керування, блокування і автоматичного регулювання (управління) температурою повітря, для функціювання приточних вентиляційних систем (ПВС) необхідно додатково ще передбачити контури автоматизації.

Автоматичне включення резервного вентилятора передбачується при подачі повітря в тамбури-шлюзи вибухонебезпечних виробництв.

При наявності рециркуляційної двохвентиляторної системи необхідно передбачити систему блокування щоб забезпечити їх сумісну роботу а також сигналізацію відхилень і нормальної роботи.

В деяких ПВС при низьких температурах зовнішнього повітря і відносно малій витраті (при низькій температурі ) теплоносія може виникнути загроза замерзання води в повітропідігрівачі. Щоб не виникало таких ситуацій, слід передбачити технологічний захист. Коли температура води понизиться до 30 0 С, а зовнішнього повітря буде меншою 3 0 С, система захисту повинна відключити вентилятор, закрити утеплений клапан, відкрити клапан подачі теплоносія до повітропідігрівача, включити електропрогрів утепленого клапана. В захисті немає необхідності, якщо температура зовнішнього і рециркульованого повітря в усьому діапазоні додатня.

На рис.8.7. Схема керування приточною вентиляцією з калориферами що гріються гарячою водою. Головним параметром регулювання цієї системи є температури повітря після вентилятора. Другою важливою проблемою є захист калорифера від замерзання в зимовий час. Для вирішення цих задач передбачені два термометри опору ТЕ, один з термометрів встановлено на початку повітропроводу,інший на трубопроводі після калорифера або в приміщенні. Регулювання здійснюється двома позиційними регуляторами. Якщо температура повітря нижча 3-4°С, а температура гріючої води нижча 20-30°С, позиційні регулятори дають команду на відключення вентилятора, закривають заслінку на повітряпроводі і відкривають клапан на трубопроводі гріючої води. При відключенні венткамери система захисту періодично прогріває калорифер шляхом пропускання гарячої води.

Якщо в якості теплоносія використовується пара, то в калорифері нагрівається тільки частина повітря. Інша частина повітря подається безпосередньо у всмоктуючу магістраль вентилятора. Система захисту в такому випадку повинна забезпечити закриття клапана на магістралі пари при повному закритті заслінки основного потоку повітря.

На рис.8.8. показана схема регулювання калорифера з чотирма секціями рівної потужності. Два позиційних регулятори здійснюють включення-відключення секцій в залежності від температури повітря в приміщенні і за вентилятором.

8.4. Автоматизація повітряних завіс.

При автоматизації повітряних завіс вирішуються наступні задачі:

1.Пуск і зупинка завіси здійснюється відповідно при відкритті і закритті воріт;

2.Зміна витрати вентилятора повітряної завіси взалежності від температури зовнішнього повітря;

3.Зміна тепловіддачі калориферів завіси взалежності від температури зовнішнього повітря або температури повітря в приміщенні біля воріт;

4.Зупинка завіси і одночасне автоматичне відключення подачі теплоносія в калорифері.

Включення і відключення завіси здійснюється при допомозі кінцевого вимикача воріт. Регулятор при підвищенні температури повітря в зоні воріт діє на виконавчий механізм регулюючого клапана, зменшуючи подачу теплоносія в калорифер, а при пониженні температури повітря відкривається збільшуючи витрату теплоносія. При закритих воротах, у випадку пониження температури повітря в приміщенні, терморегулятор включає в роботу завісу. При відключенні електродвигуна вентилятора теплової завіси автоматично спрацьовує виконавчий механізм регулюючого органу, що перекриває подачу теплоносія до калорифера. ФСА теплової завіси показана на рис.8.9.

Автоматизация систем теплоснабжения

Автоматизация систем теплоснабжения обладает целым набором достоинств:

  • Контролируется расход ресурсов. Это важно для крупных предприятий, поддержание микроклимата на которых – сложная задача, требующая больших вложений. Контроль над расходом ресурсов дает возможность оптимизировать их, достичь существенной финансовой экономии;
  • Отопление оперативно приспосабливается к изменяющимся внешним условиям. В большинстве российских регионов климат крайне сложный, перепады дневных и ночных температур могут составлять до 20 градусов. Конечно, такие внешние изменения требуют своевременной регулировки внутреннего теплового оборудования. Автоматика отслеживает данные показатели, следит за температурой внутри здания, корректирует производительности техники;
  • Возможность определения температурных режимов для каждого помещения в отдельности. Самая простая отопительная система не позволяет контролировать температуру в отдельно взятой комнате. Между тем, требования к микроклиматическим условиям на складе, в офисе, производственном цехе разные. Обеспечить это можно автоматизированным тепловым устройством. Столь современный подход не только сэкономит ресурсы, но и обеспечит оптимальные условия хранения товара, продлевающие срок годности, микроклимат, способствующий максимальной производительности и комфорту. Все это положительно скажется на общем благополучии предприятия.

Система автоматического регулирования теплоснабжения состоит из следующих модулей, каждый из которых выполняет собственную задачу:

    Основной управляющий контроллер. Главная деталь контроллера – микропроцессор с возможностью программирования. Иными словами, можно ввести данные, в соответствии с которыми будет функционировать автоматическая система. Температура может изменяться в соответствии со временем суток, например, по окончании рабочего дня приборы перейдут на минимальную мощность, а перед его началом, наоборот, выйдут на максимум, чтобы прогреть помещения до прихода смены. Контроллер может выполнять регулировку тепловых установок и в автоматическом режиме, на основе собираемых другими модулями данных;

  • Термические датчики. Датчики воспринимают температуру теплоносителя системы, а также окружающей среды, посылают соответствующие команды на контроллер. Наиболее современные модели данной автоматики посылают сигналы по беспроводным каналам связи, поэтому прокладка сложных систем проводов и кабелей не нужна, что упрощает и ускоряет монтаж;
  • Панель ручного управления. Здесь сконцентрированы основные клавиши и переключатели, позволяющие вручную управлять САРТ. Вмешательство человека необходимо при проведении тестовых запусков, подключении новых модулей, модернизации системы. Чтобы добиться максимального удобства, на панели предусматривается жидкокристаллический дисплей, позволяющий в режиме реального времени отслеживать все показатели, контролировать их соответствие нормативам, своевременно предпринимать действия, если они выходят за установленные лимиты;
  • Температурные регуляторы. Это исполнительные устройства, определяющие текущую производительность САРТ. Регуляторы могут быть механическими или электронными, но задача их одна – корректировка сечения труб в соответствии с актуальными внешними условиями и потребностями. Изменение пропускной способности каналов дает возможность уменьшить или, наоборот, увеличить объемы поступающего к радиаторам теплоносителя, за счет чего температура вырастет или уменьшится;
  • Насосное оборудование. САРТ с автоматикой предполагает, что циркуляция теплоносителя обеспечивается насосами, создающими необходимое давление, нужно для определенной скорости потока воды. Естественная схема существенно ограничивает возможности регулировки.
  • Вне зависимости от того, где будет эксплуатироваться автоматизированная система, в небольшом коттедже или на крупном предприятии, к ее проектированию и внедрению нужно подходить со всей ответственностью. Самостоятельно провести необходимые расчеты невозможно, все работы лучше доверять специалистам. Найти их можно в нашей организации. Многочисленные положительные отзывы клиентов, десятки реализованных проектов высокой степени сложности – наглядные свидетельства нашего профессионализма и ответственного отношения!

    Ссылка на основную публикацию
    Adblock
    detector