7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Самодельный робот пылесос на ардуино

Как сделать робот-пылесос своими руками — 2 идеи сборки

В современном ритме жизни не всегда получается поддерживать в доме чистоту. В этом деле поможет современные технологии. Робот-пылесос появился более 15 лет назад. Его типовой внешний вид напоминает крупную шайбу, которая передвигается по комнате по заданному алгоритму или случайным образом (пока на что-нибудь не наткнется) и собирает мусор. Предлагаем вам изучить 2 пошаговые инструкции, позволяющие сделать робот-пылесос своими руками.

Материалы для сборки

Итак, для сборки робота-пылесоса нужно разобраться с его составными частями, пойдем по порядку. Он должен сам передвигаться по комнате, поэтому нужны двигатели, в зависимости от конечной конструкции их должно быть от 2-х до 4-х, а также возможность переключения направления вращения и скорость, значит, нужна плата для управления двигателями. Если вы используете двигатели постоянного тока, то нужна плата с 4-мя транзисторами (H-мост).

Самодельный робот-пылесос должен определять столкновения со стенами и мебелью. Для этого нужно предусмотреть датчики препятствия и концевые выключатели на «бампере». Также нужен сам рабочий орган – пылесос. При этом он должен быть рассчитан на работу от постоянного тока низкого напряжения (например, 12В).

Кроме пылесоса нужна подвижная (вращающаяся) щетка, которая будет отчищать поверхность, поднимать ворс половика, сметать мусор. Для этого нужен еще один или два моторчика.

Система, которая будет всем этим управлять. Простейший вариант на Arduino. Для такой задачи подойдет любая из плат, по размерам удобно разместить вариант Nano или Pro mini.

Идея №1: робот-пылесос из картона

Основа робота делается из плотного картона. Его лучше склеить в пару слоев, а волокна разместить перпендикулярно. Для его технической начинки нужен такой набор деталей:

  1. Любая плата Arduino.
  2. Breadboard или простая макетная плата, в принципе можно и без неё, всё просто спаять.
  3. 2 ультразвуковых датчика расстояния (дальномер).
  4. Турбина от пылесоса.
  5. Небольшой двигатель или кулер от компьютера.
  6. Двигатели с редукторами и колеса.
  7. Контроллер для двигателя.
  8. Провода для соединений схемы.
  9. Аккумуляторы и контроллер заряда.

В качестве питания для робота нужно использовать 3 литиевых аккумулятора. Напряжение каждого из них 3,7 В. Для их заряда нужен контроллер. Например, такой как на фото:

Для управления двигателями привода робота удобно использовать модуль на L298-микросхеме. Схемотехнически это H-мост, вы можете его собрать своими руками из отдельных компонентов, но купить готовую плату будет надежнее. С его помощью вы можете задавать скорость движения робота-пылесоса и изменять направление вращения.

Для регулировки скорости на пин ENA или ENB подаётся ШИМ сигнал, а для задания направления вращения подают разноименные сигналы на IN1 и IN2 для одного двигателя и IN3, IN4 для другого двигателя. При этом если на пине IN1 у нас логическая единица, а на пине IN2 – логический ноль, двигатель крутится в одну сторону, чтобы сменить направление нужно поменять местами 1 с 0. Его нужно собрать с ардуино по такой схеме (пины можно использовать любые, это вы укажете в скетче).

Схема на ардуино

Далее нужно делать основу из картона и закрепить на ней колеса, должно получиться что-то вроде этого:

Основа из картона

Вот вид с нижней стороны. Два ведущих колеса с угловым редуктором и поворотное колесо:

Теперь нужно собрать схему, которая монтируется на основание. Диаметр основания должен быть около 30 см, чтобы туда влезла и электроника и сам блок пылесоса.

Вместо дальномеров можно использовать вариант с бамперами, которые соединены с концевыми выключателями. При столкновении с препятствием система управления даст сигнал о смене направления движения.

Контактные бампера можно сделать и своими руками, для этого нужен тонкий, но жесткий провод, например от витой пары. Для этого формирует контактную площадку на внутренней стороне бампера из фольги, и закрепляем проводник как это показано ниже. При столкновениях робота-пылесоса с мебелью и стенами они будут соприкасаться. Вам остается отрегулировать расстояние от проволоки до фольги, чтобы добиться нужной чувствительности и исключить ложные срабатывания. На фольгу подается 5В, а провод идёт на вход Ардуино, подтянутый к минусу через резистор на несколько кОм.

Самодельный контактный бампер

Устройство питается от аккумуляторов, для питания системы управления можно применить линейные стабилизаторы типа l7805. Чтобы отрегулировать скорость вращения моторов подойдет понижающий преобразователь, например LM2596.

Самое сложное — это сконструировать и собрать пылесос. Вот его приблизительный чертеж:

Отламываем родные лопасти от кулера, и закрепляем на его роторе турбину от пылесоса. Важно закрепить турбину точно в центре, иначе вы получите дисбаланс и вибрации.

Вот так выглядит обратная сторона турбины, закрепленной на роторе кулера. Закрепить её можно на термоклей или на суперклей

Вид турбины изнутри

Вот и вся пошаговая инструкция по сборке робота-пылесоса, сделанного из подручных материалов. Алгоритм его работы такой: робот-пылесос едет вперед, пока не встретит препятствие. После столкновения (или приближения, если вы используете УЗ дальномеры) останавливается, отъезжает назад на заданное расстояние, разворачивается на произвольный угол и едет дальше.

Идея №2: почти заводской робот

Предлагаем вашему вниманию не более сложный проект робота-пылесоса. Вот его внешний вид в собранном состоянии:

Самодельный роботизированный пылесос

Система навигации в нем собрана из комплекта 6-ти ИК-датчиков препятствия. На случай, если не сработал ни один из них, то предусмотрены два контактных датчика (концевых выключателя). Система управления двигателями на таком же драйвере с микросхемой L298N. Для его сборки вам понадобится:

  1. Плата Ардуино, в оригинале использовалась Pro-mini.
  2. USB-TTL переходник для прошивки этой модели ардуино. Если вы будете использовать Arduino Nano, то он не нужен, т.к. в ней есть возможность прошивки по USB.
  3. Драйвер для моторчиков L298N.
  4. Моторчики для колес с редуктором.
  5. 6 ИК-датчиков.
  6. Моторчики для турбины (по возможности помощнее).
  7. Крыльчатка турбины пылесоса.
  8. Моторчики для щеток могут быть любыми.
  9. 2 датчика столкновения.

Всё это собрать по такой схеме:

Схема сборки робота-пылесоса

Для сборки цепи питания робота-пылесоса нужны:

  1. 4 литиевых аккумулятора, подойдут типа 18650.
  2. 2 преобразователя постоянного напряжения (повышающий и понижающий).
  3. Контроллер для заряда и разряда 2-х аккумуляторов (искать в интернете по запросу 2s li-ion controller). В схеме используется последовательное включение двух параллельно включенных банок, в итоге их выходное напряжение получается больше 7,4В, а параллельная цепочка нужна для повышения ёмкости и автономности работы.

Вот схема питания этого робота:

Кроме этого нужен пластик (ПВХ) или любой другой материал для корпуса робота, можно его распечатать на 3D-принтере, если у вас есть такая возможность.

Для работы самоделки нужна прошивка, вот пример алгоритма хаотичной уборки, мы взяли его с сети. Ссылка для скачивания скетча: прошивка для робота-пылесоса.

В этой статье были рассмотрены 2 конструкции робота-пылесоса, которые можно повторить и собрать своими руками. Сделать автоматическое средство для уборки помещения можно, вложившись в бюджет от 30 до 100 долларов. Самыми дорогими деталями являются аккумуляторы, двигатели и платы ардуино. Если у вас получилось собрать самодельный робот-пылесос или вы придумали другую конструкцию, присылайте примеры в комментарии, будем рады открытому общению!

Напоследок рекомендуем просмотреть видео, на которых наглядно демонстрируется еще несколько идей, как сделать робот-пылесос в домашних условиях:

Собираем робот-пылесос на Arduino


Шаг первый. Создаем поворотную платформу для робота
Для своей первой самоделки автор использовал танк из игры «Танковый бой», из игрушки были выброшены все лишние детали, остался только корпус, а также двигатели и колеса. После этого был установлен Arduino UNO, драйвер двигателей и ультразвуковой дальномер. В качестве источника питания использовались три литиевые батареи по 3.7 В.

Такая конструкция имела ряд минусов. К примеру, из-за того, что колеса находились сзади платформы, у робота возникали проблемы при повороте, робот часто буксовал.

Также из-за очень большой скорости передвижения робот порой не успевал реагировать на сигналы дальномера и врезался.


Все проблемы были решены путем сборки новой платформы из картона. Для этого нужно вырезать 2 круга диаметром 30 см, а затем склеить их поперек волокон. В итоге получается довольно прочная конструкция на изгиб. Что касается моторчиков и редукторов, то они были взяты из предыдущей самоделки.

Шаг второй. Создаем сенсоры
Изначально робот ориентировался за счет дальномеров, но автору их работа не понравилась и в итоге было решено от их избавиться. На их смену пришли контактные бампера, при этом робот стал вести себя адекватнее, да и вложений при этом требуется меньше.

Читать еще:  Инструкция о закрытии офисных и складских помещений




Контактные бампера изготавливаются очень просто. Нужно взять картон и на одну его сторону приклеить фольгу, это будет первым контактом. К этой фольге нужно подать напряжение +5 В. Напротив платформы нужно установить изогнутый проводок от витой пары, он подключается через резистор, благодаря этому ложных срабатываний будет меньше. Когда робот будет во что-то врезаться, то будут замыкаться контакты, и затем электроника будет разворачивать робота в другом случайном направлении.

Шаг третий. Делаем пылесос и пылесборник
Благодаря таким материалам как картон и скотч можно быстро собрать практически любой макет. Для работы турбины используется источник питания в 18 Вольт, напрямую от батареи. При такой нагрузке кулеры греются, но работают.









Для изготовления турбины берется кулер от компьютера и затем от него отламываются все лопасти. Далее на кулер крепится турбина от пылесоса, ее нужно приклеить суперклеем. Самое главное здесь — приклеить точно, не должно быть дисбаланса. Без нагрузки и питании 18 Вольт кулер выдает порядка 2600 RPM, что создает отличную тягу. В заключении вся конструкция собирается так, как можно увидеть на фото и после этого робота можно испытывать.

Что касается алгоритма работы, то он очень простой. Если робот во что-то врезается, он затем разворачивается на случайный угол.
В будущем автор планирует сделать платформу из фанеры, чтобы она была прочнее. Еще в планах установка двух щеток спереди для более эффективной сборки мусора. Выдуваемый воздух можно направить под платформу, чтобы пыль собиралась эффективнее.

Робот пылесос своими руками. Часть 2

Выдался выходной и пришли некоторые посылочки (прям как совпало). Распаковками мучать не народ нет желания, поэтому к делу. Решил все почти полностью разобрать чтобы удобней было внедрять новые «плюшки» ,а заодно и поведать о более детальном устройстве монстра)))

Снимаем самое сердце — электронику.

Крепится все на уголок для удобства разборки.

Снимаем «подметалки» . Шайбы компенсируют неровности самого мотор-редуктора.

Скидываем АКБ и DC-DC переобразователи. Кстати АКБ закреплял их стяжками к раме. Снизу все банки изолированы.

Вот кстати модель движка виднеется. Ссылки почти на все кину в конце поста.

Вот попутно еще фото реализации крепления колес.

Выемку сделал специально чтоб колесо на оси не проворачивалось.

Теперь снимаем сам пылесос.

Попутно еще фотки самого устройства пылесоса.

Чертеж крыльчатки есть в прошлом посте.

Ну теперь продолжим с самим монстром. Делаем новую площадку под ардуино мега и драйвер двигателей.

И примеряем чтоб не задевало крышку пылесборника.

Крепим «Мегу» к площадке через латунные стоечки. А драйвер просто на болтики чтоб по высоте не мешал будущему второму этажу.

Прикидываем второй этаж для экрана и датчиков (которые кстати все еще не пришли)

Теперь по деталюхам :

Аллюминиевый уголок — стоительный магаз.

Критика (по делу) и идеи по улучшению приветствуются. Надеюсь пост будет полезен кому нибудь. ВСЕМ ДОБРА.

Дубликаты не найдены

Жаль что датчики не пришли. можно было бы уже обкатывать.

Продолжение постройки будет по мере появления всего необходимого

Ты я смотрю тоже минусы людям не ставишь)))))

В каждом ардуинщике помирает электронщик 🙂 травление не практикуешь?

не правда электронщик не умирает))) порой даже наоборот))) травлю платки по настроению. Благо опыт в это большой. Начинал еще в школьные годы с рисования дорожек нитролаком и травлением медным купоросом.

Тогда мне вас (в смысле ардуинщиков) не понять: плата стоит в 10 раз дороже чипа — это раз. Обвязку атмеге почти делать не надо — два. Каждый контакт который пин — 100% источник глюка в будущем, особенно на подвижной модели — три. Запилить себе платку, впаять несколько транзюков для управления двигателями, сделать выводы под программатор, экран, датчики и что там у тебя еще. хм. так похоже будет на вещь, а не на детскую поделку. (я прошу прощения, я ни в коем случае не учу и не навязываю своего мнения, просто в толк не возьму)

Что мне нравится в ардуинах так это модульность. Захотел что то изменить, заменил только часть конструкции а не всю конструкцию в целом. Так же ремонтопригодность отличная, а чтоб небыло глюков , я слегка приклеиваю пин (точнее их пластиковые части) к разьему горячим клеем, капли достаточно и шлейфы для готовой конструкции спаиваю всегда сам и креплю все провода стяжками. А по ценам китай радует клонами на любой вкус и малую цену: нано примерно 120 рублей с програматором на той же плате. Атмега 8 стоит примерно 55 рублей без платы и обвязки. Получается не сильно и дороже))). Можно самому паять всю конструкцию на одной плате когда сильно ограничено пространство корпуса. А глюки будут 100 процентов если собрать все на бредборде и так оставить в готовой подвижной модели.( Оскорбить чем либо никого не пытался. Все написанное мое чисто субьективное мнение)

Робот-пылесос на ардуино

Несмотря на то, что на geektimes уже есть несколько статей про роботы-пылесосы на ардуино тут и тут, Думаю не будет лишним опубликовать еще один проект. Тем более он сделан чуть ближе к магазинным образцам и, поскольку проект постоянно продолжает развиваться, со временем превзойдет по функционалу некоторые из них. Данный пост я публикую с разрешения разработчика этого робота-пылесоса, поскольку у автора нет возможности публиковать статьи со своего аккаунта. Поэтому статья будет в форме небольшого интервью с создателем вперемешку со схемами, фото и кодом робота-пылесоса. Но начнем с видеодемонстрации уборки комнаты этим пылесосом.

Итак, начнем, пожалуй, с конструкции и принципа работы пылесоса.

Из схемы видно, что пылесос оборудован 6 инфракрасными датчиками. Они срабатывают при приближении пылесоса к препятствию, давая комманду остановиться и развернуться не врезаясь в него. Если же ни один из 6 датчиков не сработал и робот пылесос сталкивается с препятствием, то тогда срабатывает один из 2 выключателей, которые соединяют бампер (в котором находятся ИК датчики) и корпус робота.

Внимательные читатели заметили, что на схеме не показано питание робота. Тут решение вполне стандартное, использованы 4 аккумулятора формата 18650, подключенных последовательно две пары, через контроллер заряда-разряда АКБ. Далее с контроллера через выключатель подсоединены повышающий и понижающий DC-DC преобразователи. + 12 вольт питает моторы колес и моторы передних щеток. +5 вольт питает всю остальную электронику. Турбина питается от 7 — 8 вольт, так что для нее преобразователь не нужен. Выглядит это так:

В итоге список основных компонентов выглядит так:

ардуино про мини
L298N Motor Driver Module
колеса
повышающий конвертер
понижающий конвертер
ИК датчик 6 шт
контроллер заряда-разряда
крыльчатка для турбины (около 200 руб)
ПВХ для изготовления корпуса
АКБ 18650 4 шт.
2 моторчика для щеток (модель не сильно важна)
1 моторчик для турбины
2 выключателя столкновения.
Один из вариантов скетча для хаотичной уборки

#define mot_ena 9 //пин ШИМа левого мотора
#define mot_in1 8 //пин левого мотора
#define mot_in2 7 //пин левого мотора
#define mot_in3 6 //пин правого мотора
#define mot_in4 4 //пин правого мотора
#define mot_enb 10 //пин ШИМа правого мотора

#define ir_1 A0 //пин 1 ИК-датчика
#define ir_2 A1 //пин 2 ИК-датчика
#define ir_3 A2 //пин 3 ИК-датчика
#define ir_4 A3 //пин 4 ИК-датчика
#define ir_5 A4 //пин 5 ИК-датчика
#define ir_6 A5 //пин 6 ИК-датчика

#define lev_vik 11 //пин левого выключателя
#define pra_vik 12 //пин правого выключателя

//для выравнивания скорости колес
byte max_skor_lev = 254;
byte max_skor_prav = 244;
//———————————

byte min_skor = 0;

randomSeed(analogRead(A7));
// пины энкодеров на вход
pinMode(3, INPUT); // пин левого энкодера на вход
pinMode(2, INPUT); // пин правого энкодера на вход
//————————-
// пины для левого и правого моторов на выход
pinMode(mot_ena, OUTPUT);
pinMode(mot_in1, OUTPUT);
pinMode(mot_in2, OUTPUT);
pinMode(mot_in3, OUTPUT);
pinMode(mot_in4, OUTPUT);
pinMode(mot_enb, OUTPUT);
//——————————————-
// пины ИК-датчиков на вход
pinMode(ir_1, INPUT);
pinMode(ir_2, INPUT);
pinMode(ir_3, INPUT);
pinMode(ir_4, INPUT);
pinMode(ir_5, INPUT);
pinMode(ir_6, INPUT);
//————————-
// пины левого и правого выключателей на вход
pinMode(lev_vik, INPUT);
pinMode(pra_vik, INPUT);
//—————————
delay(3000);

Читать еще:  Инструкция поведения при пожаре

// если срабатывает левый выключатель на бампере
if (digitalRead(lev_vik) == LOW)
<
ROB_STOP();
delay(200);
ROB_NAZAD();
delay(150);
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(400, 1500));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает правый выключатель на бампере
if (digitalRead(pra_vik) == LOW)
<
ROB_STOP();
delay(200);
ROB_NAZAD();
delay(150);
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(400, 1500));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 2 ИК-датчик
if (digitalRead(ir_2) == LOW)
<
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 3 ИК-датчик
if (digitalRead(ir_3) == LOW)
<
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 4 ИК-датчик
if (digitalRead(ir_4) == LOW)
<
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 5 ИК-датчик
if (digitalRead(ir_5) == LOW)
<
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 1 ИК-датчик
if (digitalRead(ir_1) == LOW)
<
ROB_PRAV();
delay(10);
ROB_VPERED();
>
//————————————————
// если срабатывает 6 ИК-датчик
if (digitalRead(ir_6) == LOW)
<
ROB_LEV();
delay(10);
ROB_VPERED();
>
//————————————————

// поворот направо на месте
void ROB_PRAV()
<
// левый мотор вперед
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, HIGH);
analogWrite(mot_ena, max_skor_lev);
// правый мотор назад
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, HIGH);
analogWrite(mot_enb, max_skor_prav);
>
//——————
// поворот налево на месте
void ROB_LEV()
<
// правый мотор вперед
digitalWrite(mot_in3, HIGH);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, max_skor_prav);
// левый мотор назад
digitalWrite(mot_in1, HIGH);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, max_skor_lev);
>
//———————
// езда вперед
void ROB_VPERED()
<
// левый мотор вперед
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, HIGH);
analogWrite(mot_ena, max_skor_lev);
// правый мотор вперед
digitalWrite(mot_in3, HIGH);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, max_skor_prav);
>
//————————————-
// езда назад
void ROB_NAZAD()
<
// левый мотор назад
digitalWrite(mot_in1, HIGH);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, max_skor_lev);
// правый мотор назад
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, HIGH);
analogWrite(mot_enb, max_skor_prav);
>
//————————————
// стоп
void ROB_STOP()
<
// левый мотор стоп
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, min_skor);
// правый мотор стоп
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, min_skor);
>
//———————————

Ну и небольшое интервью с автором этого проекта. Автора зовут Дмитрий Иванов, живет в г. Сочи.

— Дмитрий, как пришла идея сделать робот-пылесос?

— Увидел на ютубе видео, где робот-пылесос делал уборку, захотел себе купить такой, но когда посмотрел цену, то подумал и решил делать сам. Сначала сделал первую версию робота, у него были слабые моторы на колесах, несъемный контейнер для мусора и пыли, мало датчиков препятствия и я сделал вторую версию, лишенную этих недостатков.

— Сколько в итоге денег и времени ушло на его изготовление?

«Примерно 5000 тыс. руб. плюс два месяца работы»

— Что было самым сложным в процессе постройки?

Самое сложное сделать корпус и турбину, подогнать все детали.

— Есть планы продолжать совершенствование робота?

В планах покрасить корпус, сделать несколько режимов уборки, подключить блютус модуль и написать программу для телефона на андроиде (управление режимами, ручное управление, отображение заряда АКБ). Ну и сделать под пылесосом синюю подсветку для красоты.

Сборник из более 100 обучающих материалов по ардуино для начинающих и профи можно найти тут.
P.S. Онлайн курс по ардуино на гиктаймс здесь.На этом оптимистичном моменте, думаю, закончим рассказ про эту версию робота-пылесоса, хотя осталось много неосвещенных интересных моментов. И поэтому завершаем вопросом:

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.

Как сделать робот-пылесос своими руками: алгоритм производства домашнего помощника

Робот-пылесос – нужная машина. Но у нее есть один существенный недостаток – цена.

Хорошая модель стоит недешево, а дешевая модель больше напоминает игрушку, но за нее тоже нужно заплатить определенную сумму.

Поэтому народные умельцы предпочитают собирать такие системы самостоятельно, благо в продаже для этого есть все комплектующие.

Многие из них охотно рассказывают, как сделать пылесос-робот своими руками.

Самое важное в этом деле, кроме необходимой базы запчастей, — почувствовать себя настоящим конструктором и не бояться экспериментировать. А получившуюся модель всегда можно улучшить.

Материалы для сборки робота-пылесоса в домашних условиях

Перед тем, как сделать робот-пылесос, нужно подготовить все необходимое.

  1. Ножницы;
  2. Циркуль;
  3. Простой карандаш;
  4. Линейка;
  5. Пистолет для термоклея;
  6. Две трубки термоклея.
  • Гофрированный картон размером 1.5х1.0 м;
  • Марля размером 0.3х0.3 м;
  • Резинка для банкнот.
  1. Два блока колес;
  2. Плата ARDUINO UNO;
  3. Драйвер двигателя L298N;
  4. Два мотора на метелки по 12 В;
  5. Датчик приближенности для Ардуино ультразвуковой;
  6. Блок аккумуляторов;
  7. Кулер от компьютера из системного блока;
  8. Опорное колесо.

Как сделать робот-пылесос своими руками в домашних условиях

Когда все комплектующие и материалы в наличии, следует преступить к сборке.

Общий план таков:

  • Вначале собирают корпус – здесь каждая деталь оригинальна и изготавливается отдельно;
  • Следующий этап – установка Ардуино для робота-пылесоса своими руками и другой электроники, блока аккумуляторов и коммутация их проводами;
  • В корпус устанавливают приводы – это колеса и моторы боковых щеток;
  • Далее изготавливают всасывающий узел и крепят его к корпусу;
  • Крепят самодельные боковые метелки;
  • Программируют устройство и проводят полевые испытания;
  • Если все работает, закрывают корпус верхней панелью.

Сборка корпуса из картона и установка Ардуино

Как сделать робот-пылесос, начиная с корпуса:

  1. Из картона вырезают два круга диаметром 46 см. Один круг – это нижнее основание корпуса, другой – верхняя панель;
  2. В нижней части посередине вырезают отверстие, равное диаметру крыльчатки компьютерного кулера;
  3. Впереди нижней части по бокам вырезают два прямоугольника под моторы боковых щеток (ориентир – как у любого промышленного аппарата);
  4. Сзади по бокам вырезают пазы под ведущие колеса – чем ближе к краю корпуса, тем лучше. Строго впереди – паз под опорное колесо;
  5. Из картона вырезают прямоугольник размером 20 см на 146 см;
  6. Гофрированный картон надрезают по одной плоскости через каждые 2 см. Режут поперек длинной стороны;
  7. Полученную заготовку сворачивают в цилиндр и приклеивают к основанию термоклеем. Таким же способом приклеивают блоки колес, моторы на метелки, опорное колесо;
  8. Блок Ардуино, соединенный с драйвером колес, крепят в передней части внутри корпуса, не закрывая среднее отверстие под турбину;
  9. В торцовой части впереди вырезают два отверстия под датчик приближения.

Изготовление всасывающего модуля с турбиной

  • Из картона делают прямоугольный канал без торцовых частей, размер которых равен размеру основания кулера. Высота канала 25 см;
  • Посередине канала под наклоном 30 градусов вклеивают перегородку. С верхней стороны наклона должен быть зазор шириной 2 см между перегородкой и стенкой канала;
  • Изготавливают маленькую коробочку без крышки с размером сторон равным размеру перегородки и высотой бортов 5 см и устанавливают ее на перегородку;
  • Под перегородку в низ основания канала вставляют и вклеивают кулер так, чтобы он дул на перегородку;
  • На верхнюю часть канала надевают кусок марли, и свободные концы фиксируют резинкой для банкнот вокруг канала;
  • Канал стороной кулера приклеивают напротив отверстия в середине основания пылесоса;
  • В верхней панели вырезают прямоугольник под канал и надевают сверху.

Коммутация схем и настройка программы

После того, как установлены все элементы, питание колес подключают на драйвер колес на соответствующие управляемые разъемы. Моторы метелок подключают к выводам, где появляется постоянное напряжение при включении тумблера.

Тумблер впаивают между батареей и питанием схемы Ардуино. Схему датчика приближения подсоединяют к Ардуино. При включении тумблера пылесос начнет двигаться по площади, обходя предметы.

Настройка платы заключается в регулировке скорости (величины подачи напряжения на ведущие колеса), которая не должна превышать 30-25 см/с. Чтобы аппарат не ехал куда не нужно, можно подумать, как сделать виртуальную стену для пылесоса-робота своими руками.

Сборка корпуса из пластика и фанеры

Как сделать робот-пылесос не из картона, а, например, из пластика и фанеры? Очень просто.

В этом случае нижнюю часть вырезают из 4 мм фанеры при помощи электролобзика (размеры аналогичны вышеописанным).

В качестве торцовой части корпуса и верхней крышки можно использовать пластиковое ведро из-под фасадной краски (диаметр не должен превышать основания). Его обрезают так, чтобы высота с дном не превышала 20 см.

После того как на нижней части установят все оборудование и на ведре закрепят датчик приближения, ведро переворачивают и прикрепляют к основанию при помощи уголков.

Изготовление системы всасывания пыли

Турбину для робота-пылесоса своими руками в этом варианте конструкции можно изготовить по-иному принципу:

  1. В качестве емкости пылесборника берут пластиковую емкость (объем — 1 литр);
  2. В дне емкости посередине делают прорез шириной 1 см и длиной 10 см;
  3. Из прозрачного файла для бумаги вырезают прямоугольник шириной 3 см и длиной 12 см;
  4. Этим прямоугольником накрывают прорезь внутри емкости и фиксируют пленку с одной стороны скотчем на всю длину (12 см);
  5. Получается клапан, который при втягивании воздуха внутрь емкости открывается, а при выключении пылесоса перекрывает канал;
  6. В крышке от емкости делают отверстие, по диаметру равное диаметру крыльчатки вентилятора;
  7. Вентилятор крепят к крышке с внутренней стороны, с наружной – наклеивают мелкую пластиковую москитную сетку;
  8. Крышку ставят на место – турбина готова.
Читать еще:  Электрическая ножеточка какую выбрать

Как и в предыдущем варианте робота-пылесоса, после проведения всех работ по коммутации устройств между собой, необходимо провести настройку прибора.

Эта настройка заключается в выборе скорости движения машины. Отвечает за эту функцию драйвер двигателя.

Заключение

Рассмотренные самодельные модели роботов-пылесосов хороши для проведения быстрых уборок, когда нужно подмести полы.

Чтобы подобные аппараты могли хорошо втягивать и пыль – недостаточно обычного вентилятора от компьютера.

Нужно использовать более мощные моторы, например, от фена, и лопасти нужно изготавливать другой конструкции.

В этих же моделях для лучшего эффекта всасывания нужно соблюсти расстояние от дна до пола не более 1 см.

Робот-пылесос самодельной конструкции нельзя использовать в местах, где есть возможность падения его с высоты.

В простой системе не предусмотрены датчики контроля уровня пола. В сети имеются лайфхаки как сделать пылесос-робот моющим.

Видео: Как сделать робот-пылесос своими руками

Как сделать робот-пылесос?

Сейчас популярность роботизированных домашних уборщиков все возрастает с каждым днем. Это обосновано тем, что данные устройства способны поддерживать покрытия вашего пола в чистоте и при этом не отнимать у вас времени. Их главным отличием от управляемых человеком собратьев является то, что очистка поверхности, перемещение и ориентирование в пространстве осуществляются устройством самостоятельно. Этого удалось достичь благодаря наличию специальных датчиков, которые контролируют смену режима работы, перемещение и подзарядку пылесоса.

Основная проблема заключается в том, что приобрести робот-пылесос на рынке сейчас достаточно проблематично. Далеко не везде удается подобрать подходящую модель, да и ценовая политика некоторых реализаторов устраивает далеко не всех. Однако не стоит отчаиваться. У вас всегда есть возможность создать самодельный робот-пылесос. Само собой, сделать такое устройство своими руками и в домашних условиях — это весьма длительный процесс, который потребует терпения, определенного набора материалов и инструментов, а также навыков работы с подобного рода техникой. Схема создания робота-пылесоса в домашних условиях вполне постижима даже для любителя. Однако в процесс создания подобного рода механизмов необходимо вникнуть и выяснить все нюансы предстоящей операции. В противном случае вы лишь зря потратите время и средства.

Робот-пылесос своими руками

Описание самодельного робота пылесоса

Если вы хотите создать механизм, который будет идеально подходить для очистки поверхностей пола в вашем доме, вам следует внимательно соблюдать все правила, которые предписывает схема сборки, представленная в следующем пункте.

Если вы все сделаете правильно, у вас получится модель, соответствующая этому описанию:

  • диаметр устройства составляет 30 сантиметров, высота – 9 сантиметров. Корпус сделан из вспененного поливинилхлорида. При этом толщина самого корпуса достигает 6 миллиметров;
  • в бампере установлены 4 датчика, посредством которых будет фиксироваться положение робота-пылесоса в пространстве. При этом имеется пара переключателей, подсоединенных на случай непредвиденных столкновений. Края обиты резиновой прокладкой, чтобы при случайном столкновении с мебелью не повредить ее;
  • емкость для пыли и мусора изготовлена из поливинилхлорида толщиной в 4 миллиметра. Фильтр для пыли изготовлен из 2 обыкновенных тряпичных салфеток, которые можно купить в каком угодно бытовом магазине. Крышка, защищающая содержимое мусорного контейнера, прикреплена к основанию при помощи магнитов;
  • турбина изготовлена из тонких пластиковых листов, фрагментов компьютерных дисков и поливинилхлорида;
  • верхняя крышка устройства держится на суперклее;

  • инфракрасные датчики имеют 4 выхода подключения к системе «Ардуино». При этом обычный режим работы подразумевает выдачу логической единицы, а ситуация, в которой хотя бы один из датчиков системы срабатывает — логический ноль;
  • если ИК-датчик не сработал, а пылесос тем не менее наткнулся на какое-либо препятствие, его бампер нажмет на переключатель, что спровоцирует откат устройства на несколько сантиметров назад. После этого будет произведен разворот, а работа продолжится. Переключатели при этом нужны достаточно мощные, чтобы своевременно устанавливать бампер в исходное положение;
  • мотор, отвечающий за движение передней щетки, подключается в Arduino через MOSFET. При этом в том случае, когда робот-пылесос находится в движении, щетка вращается достаточно медленно для того, чтобы пыль, грязь и мусор не разбрасывались по комнате, а, наоборот, собирались вместе и втягивались в жерло. А если робот находится возле стены или угла, щетка ускоряет темп своей работы, так как большинство пыли и грязи как раз и скапливается вдоль плинтусов;
  • питание робота пылесоса осуществляют 4 литийионных аккумулятора, а также понижающий преобразователь переменного тока. Каждая пара вышеупомянутых литийионных аккумуляторов подключена последовательно;
  • основание устройства изготовлено из высокопрочной фанеры;
  • конструкция устройства подразумевает наличие 3 шариковых колес;
  • все щетки робота-пылесоса изготовлены из достаточно жесткой лески.

Схема сборки робота-пылесоса в домашних условиях

Чтобы правильно сделать робот-пылесос своими руками, необходимо придерживаться следующего алгоритма (схема должна выполняться в четко указанной последовательности):

  • Загрузить необходимое программное обеспечение. Если вы хотите сделать свой робот-пылесос максимально похожим на заводские аналоги (исходя из выполняемых функций), вам нужно будет загрузить на микроконтроллер «Ардуино» необходимое программное обеспечение. Это можно сделать при помощи обыкновенного персонального компьютера — достаточно лишь загрузить код на плату «Ардуино».
  • Закрепить основные компоненты. Чтобы средства передвижения робота-пылесоса, кулер, микросхемы, аккумуляторы и вся прочая начинка устройства были надежно закреплены, вам потребуется фанерная основа. Она же по совместительству будет днищем вашего пылесоса. Туда же крепятся предварительно склеенные между собой при помощи суперклея турбина и емкость для сбора отходов. Также контейнер должен быть оборудован специальной трубкой, через которую будет выводиться выдуваемый воздух. Она должна быть защищена плотной тканью, которая послужит средством фильтрации. Кулер должен быть последовательно склеен со всеми сервоприводами, после чего посажен на все ту же фанерную площадку, на которой к тому времени уже должны быть монтированы микросхемы и аккумуляторы для подпитки устройства. Колеса для робота пылесоса могут быть куплены на рынке (однако вы можете предпринять попытку сделать их своими руками из консервной банки).

Механическая часть робота-пылесоса

  • Установить бампер. В этой модели он изготавливается из поливинилхлорида. Однако возможны и металлические аналоги. В любом случае при столкновении он должен физически воздействовать на переключатель, который заставит аппарат двигаться в другую сторону. Также стоит отметить, что после столкновения бампер должен возвращаться на первоначальное место.
  • Установить корпус. Чтобы все содержимое конструкции было надежно защищено, лучше всего использовать корпус из поливинилхлорида. При этом на нем можно сделать надрезы, чтобы он лучше снимался. Крышка корпуса крепится при помощи магнитов. В идеале их должно быть не менее 8 (приветствуются вариации, в которых использовано большее их количество).

Изготовление робота-пылесоса в домашних условиях

Необходимые материалы

Чтобы сделать робот-пылесос своими руками, вам потребуются следующие материалы:

  • «Ардуино Про Мини» — главный мозг и информационный центр всей конструкции.
  • Драйвер моторов робота-пылесоса серии Л298Н.
  • Понижающий преобразователь переменного тока.
  • Модуль с мосфетом, посредством которого будет осуществляться контроль над темпом работы передней щетки устройства.
  • 4 инфракрасных датчика, которые будут фиксировать наличие препятствий на пути робота пылесоса.
  • Пара переключателей, которые будут изменять направление движение устройства при столкновении.
  • 3 шарообразных колеса.

Колеса для самодельного робота-пылесоса

  • Мотор, обеспечивающий вращение щетки в различных режимах.
  • Мотор высокой мощности, обеспечивающий нормальное функционирование турбины.
  • 4 литийионных аккумулятора, а также средство контроля над ними.
  • Фанерное основание нужного размера.
  • Корпус из поливинилхлорида нужного размера.
  • 8 пар магнитов для крепления.
  • Провода, кабели, переключатели и прочие элементы электрической сети.

Автор, специалист в сфере IT и новых технологий.

Получил высшее образование по специальности Фундаментальная информатика и информационные технологии в Московском государственном университете имени М.В. Ломоносова. После этого стал экспертом в известном интернет-издании. Спустя время, решил попробовать писать статьи самостоятельно. Ведет популярный блог на Ютубе и делится интересной информацией из мира технологий.

Ссылка на основную публикацию
Adblock
detector